Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning the photoluminescence, magnetism and cytotoxicity of ZnO by tailoring the nanostructures

Zhang Jian-Hui Han Ji-Gang

Citation:

Tuning the photoluminescence, magnetism and cytotoxicity of ZnO by tailoring the nanostructures

Zhang Jian-Hui, Han Ji-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnO nanomaterials have been extensively investigated for its broad applications such as room-temperature UV lasers, light-emitting diodes, solar cells, dilute magnetic semiconductors, bio-labeling, and target medicines. Tuning and optimizing the properties of ZnO nanostructures are urgent for the practical applications. Here, the photoluminescence, magnetism, and cytotoxicity of ZnO nanparticles have been effectively tuned by adjusting the nanostructures. Firstly, by developing the novel polyvinylpyrrolidone(PVP)-directed crystallization route, microwave heating-assisted forced hydrolysis method, and post-treating with surfactants, a series of high pure ZnO nanostructures including spheres, semispheres, rods, tubes, T-type tubes, tripods, wafers, gears, double layers, multilayer, capped pots, and bowls with tunable size and surface component/charge has been successfully prepared. The PVP can greatly promote the ZnO nucleation by binding water, and direct the ZnO growth by forming a variety of soft-templates and/or selectively capping the specific ZnO facet which is confirmed by the infrared absorption spectra. Secondly, the band-edge UV emission of ZnO has been greatly modified in both intensity and peak position by simply changing the sizes, shapes, and surface component of the ZnO nanoparticles. However, changing the surface charge of ZnO nanoparticles can only vary the intensity of the band-edge UV emission of ZnO. Significantly, the fluorescence of fluorescein isothiocyanate (FITC) is increased by up to 90 fold through doping the FITC molecules into the ZnO naoncrystals, which can effectively separate the FITC molelcules and avoid the energy transfer and the resulting fluorescence self-quenching. Thirdly, the room temperature ferromagnetism with tunable intensity is induced in the ZnO nanoparticles by coating them with different surfactants at different concentrations. As confirmed by the x-ray photoemission spectra, the coated surfactant molecules can donate electrons to the ZnO nanoparticles and induce the ferromagnetism. The electron number varies with the surfactant and the surfactant concentration, leading to the fluctuant ferromagnetism. The theoretical calculation further reveal the fluctuant nature of ferromagnetism in the ZnO nanoparticles coated with surfactants. This explains the previously reported seemingly irreconcilable ZnO ferromagnetism induced by capping surfactants, and provides a general chemical approach to tuning the ferromagnetism of ZnO nanoparticles by modifying the capping-surfactant concentration. Finally, it is revealed that the shape, size, surface charge/composition, and band-gap of ZnO nanostructures have different influences on the ZnO-induced cytotoxicity. The surface composition or adsorbed species of NPs may contain the toxic matter such as OH-ions that determine the NP-induced cytotoxicity, and should be detected before cytotoxicity assays are conducted. The rod-like NPs are more toxic than the spherical NPs. The positive surface charge can accelerate the nanoparticle-induced toxic action and enhance the cytotoxicity. Compared with the effects of shape and surface composition/charge, the influence of the nanoparticle-size variation on the nanparticle-induced cytotoxicity is less significant, and can be overwhelmed by other factors. These results will be conducible to the cytotoxicity assay and safe usage of ZnO NPs.
    • Funds: Project supported by the National Basic Research Programs of China (Grant No. 2012CB932304), the Program for New Century Excellent Talents, and the National Natural Science Foundation of China (Grant No. 61264008).
    [1]

    Fierro J L G 2006 Metal Oxides: Chemistry & Applications (Boca Raton: Taylor & Francis Group) p182

    [2]

    Özgr , Alivov Ya I, Liu C, Teke A, Reshchikov M A, Doan S, Avrutin V, Cho S J 2005 J. Appl. Phys. 98 041301

    [3]

    Rossler U 1999 Landolt-Bornstein, New Series, Group III (Heidelberg: Springer) p41B

    [4]

    Klingshirn C F, Meyer B K, Waag A, Hoffmann A, Geurts J M M 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer) p9

    [5]

    Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris A S 2007 Adv. Funct. Mater. 17 3897

    [6]

    Escudero R, Escamilla R 2011 Solid State Commun. 151 97

    [7]

    Zhang J, Liu H, Wang Z, Ming N 2008 J. Crystal Growth 310 2848

    [8]

    Zhang J, Liu H, Wang Z, Ming N 2007 Appl. Phys. Lett. 90 113117

    [9]

    Zhang J, Thurber A, Tenne D A, Rasmussen J W, Wingett D, Hanna C, Punnoose A 2010 Adv. Funct. Mater. 20 4358

    [10]

    Thurber A T, Beausoleil G L, Alanko G A, Anghel J J, Jones M S, Johnson L M, Zhang J, Hanna C B, Tenne D A, Punnoose A 2011 J. Appl. Phys. 109 07C305

    [11]

    Zhang J, Xiong S, Wu X, Thurber A, Jones M, Gu M, Pan Z, Tenne D A, Hanna C B, Du Y, Punnoose A 2013 Phys. Rev. B 88 085437

    [12]

    Zhang J, Dong G, Thurber A, Hou Y, Gu M, Tenne D A, Hanna C B, Punnoose A 2012 Adv. Mater. 24 1232

    [13]

    Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett D G 2009 Nanoscale Res. Lett. 4 1409

    [14]

    Thurber A, Wingett D G, Rasmussen J, Layne J, Johnson L, Tenne D A, Zhang J, Hanna C B, Punnoose A 2012 Nanotoxicology 6 440

    [15]

    Zhang J, Dong G, Thurber A, Hou Y, Tenne D A, Hanna C B, Gu M, Pan Z, Wang K, Du Y, Punnoose A 2014 Particle & Particle Systems Characterization, DOI: 10.1002/ppsc.201400188

    [16]

    Joo J, Kwon S G, Yu J H, Hyeon T 2005 Adv. Mater. 17 1873

    [17]

    Lao J Y, Wen J G, Ren Z F 2002 Nano Lett. 2 1287

    [18]

    Pradhan D, Su Z, Sindhwani S, Honek J F, Leung K T 2011 J. Phys. Chem. C 115 18149

    [19]

    Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W 2004 Appl. Phys. Lett. 84 287

    [20]

    Li F, Ding Y, Gao P, Xin X, Wang Z L 2004 Angew. Chem. Int. Ed. 43 5238

    [21]

    Ghosh M, Raychaudhuri A K 2008 Nanotechnology 19 445704

    [22]

    Norberg N S, Gamelin D R 2005 J. Phys. Chem. B 109 20810

    [23]

    Wang X, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [24]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P 2001 Science 292 1897

    [25]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [26]

    Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S E, Wang L N, Muhammed M 1997 J. Phys. Chem. B 101 2598

    [27]

    Song J, Zhou J, Wang Z L 2006 Nano Lett. 6 1656

    [28]

    Tian Z R, Voigt J A, Mckenzie B, Mcdermott M J 2002 J. Am. Chem. Soc. 124 12954

    [29]

    Degen A, Kosec M 2000 J. Eur. Ceram. Soc. 20 667

    [30]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

    [31]

    Das S C, Green R J, Podder J, Regier T Z, Chang G S, Moewes A 2013 J. Phys. Chem. C 117 12745

    [32]

    Richters J P, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103

    [33]

    Helms V 2008 Principles of Computational Cell Biology (Weinheim: Wiley-VCH) p202

    [34]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [35]

    Deng S, Loh K P, Yi J B, Ding J, Tan H R, Lin M, Foo Y L, Zheng M, Sow C H 2008 Appl. Phys. Lett. 93 193111

    [36]

    Yazaki Y, Suda M, Kameyama N, Einaga Y 2010 Chem. Lett. 39 594595

    [37]

    Ortega D, Chen S J, Suzuki K, Garitaonandia J S 2012 J. Appl. Phys. 111 07C314

    [38]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [39]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

  • [1]

    Fierro J L G 2006 Metal Oxides: Chemistry & Applications (Boca Raton: Taylor & Francis Group) p182

    [2]

    Özgr , Alivov Ya I, Liu C, Teke A, Reshchikov M A, Doan S, Avrutin V, Cho S J 2005 J. Appl. Phys. 98 041301

    [3]

    Rossler U 1999 Landolt-Bornstein, New Series, Group III (Heidelberg: Springer) p41B

    [4]

    Klingshirn C F, Meyer B K, Waag A, Hoffmann A, Geurts J M M 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer) p9

    [5]

    Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris A S 2007 Adv. Funct. Mater. 17 3897

    [6]

    Escudero R, Escamilla R 2011 Solid State Commun. 151 97

    [7]

    Zhang J, Liu H, Wang Z, Ming N 2008 J. Crystal Growth 310 2848

    [8]

    Zhang J, Liu H, Wang Z, Ming N 2007 Appl. Phys. Lett. 90 113117

    [9]

    Zhang J, Thurber A, Tenne D A, Rasmussen J W, Wingett D, Hanna C, Punnoose A 2010 Adv. Funct. Mater. 20 4358

    [10]

    Thurber A T, Beausoleil G L, Alanko G A, Anghel J J, Jones M S, Johnson L M, Zhang J, Hanna C B, Tenne D A, Punnoose A 2011 J. Appl. Phys. 109 07C305

    [11]

    Zhang J, Xiong S, Wu X, Thurber A, Jones M, Gu M, Pan Z, Tenne D A, Hanna C B, Du Y, Punnoose A 2013 Phys. Rev. B 88 085437

    [12]

    Zhang J, Dong G, Thurber A, Hou Y, Gu M, Tenne D A, Hanna C B, Punnoose A 2012 Adv. Mater. 24 1232

    [13]

    Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett D G 2009 Nanoscale Res. Lett. 4 1409

    [14]

    Thurber A, Wingett D G, Rasmussen J, Layne J, Johnson L, Tenne D A, Zhang J, Hanna C B, Punnoose A 2012 Nanotoxicology 6 440

    [15]

    Zhang J, Dong G, Thurber A, Hou Y, Tenne D A, Hanna C B, Gu M, Pan Z, Wang K, Du Y, Punnoose A 2014 Particle & Particle Systems Characterization, DOI: 10.1002/ppsc.201400188

    [16]

    Joo J, Kwon S G, Yu J H, Hyeon T 2005 Adv. Mater. 17 1873

    [17]

    Lao J Y, Wen J G, Ren Z F 2002 Nano Lett. 2 1287

    [18]

    Pradhan D, Su Z, Sindhwani S, Honek J F, Leung K T 2011 J. Phys. Chem. C 115 18149

    [19]

    Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W 2004 Appl. Phys. Lett. 84 287

    [20]

    Li F, Ding Y, Gao P, Xin X, Wang Z L 2004 Angew. Chem. Int. Ed. 43 5238

    [21]

    Ghosh M, Raychaudhuri A K 2008 Nanotechnology 19 445704

    [22]

    Norberg N S, Gamelin D R 2005 J. Phys. Chem. B 109 20810

    [23]

    Wang X, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [24]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P 2001 Science 292 1897

    [25]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [26]

    Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S E, Wang L N, Muhammed M 1997 J. Phys. Chem. B 101 2598

    [27]

    Song J, Zhou J, Wang Z L 2006 Nano Lett. 6 1656

    [28]

    Tian Z R, Voigt J A, Mckenzie B, Mcdermott M J 2002 J. Am. Chem. Soc. 124 12954

    [29]

    Degen A, Kosec M 2000 J. Eur. Ceram. Soc. 20 667

    [30]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

    [31]

    Das S C, Green R J, Podder J, Regier T Z, Chang G S, Moewes A 2013 J. Phys. Chem. C 117 12745

    [32]

    Richters J P, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103

    [33]

    Helms V 2008 Principles of Computational Cell Biology (Weinheim: Wiley-VCH) p202

    [34]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [35]

    Deng S, Loh K P, Yi J B, Ding J, Tan H R, Lin M, Foo Y L, Zheng M, Sow C H 2008 Appl. Phys. Lett. 93 193111

    [36]

    Yazaki Y, Suda M, Kameyama N, Einaga Y 2010 Chem. Lett. 39 594595

    [37]

    Ortega D, Chen S J, Suzuki K, Garitaonandia J S 2012 J. Appl. Phys. 111 07C314

    [38]

    Liu E Z, Jiang J Z 2009 J. Phys. Chem. C 113 16116

    [39]

    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y 2006 J. Phys. Chem. B 110 19147

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] Zhang Zhu-Feng, Ren Yin-Shuan. Preparation and magnetic properties of chromium doped zinc sulfide and cadmium sulfide nanostructures by solvothermal method. Acta Physica Sinica, 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [4] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [5] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] Cui Hong-Fei, Li Kai, Yang Chen-Guang, He Shu-Li. Magnetic properties of (Fe1-xCox)3BO5 nanorods. Acta Physica Sinica, 2015, 64(5): 057501. doi: 10.7498/aps.64.057501
    [7] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [8] Zhao Cui-Lian, Zhen Cong-Mian, Ma Li, Pan Cheng-Fu, Hou Deng-Lu. Morphology and ferromagnetism of Ge nanostructure. Acta Physica Sinica, 2013, 62(3): 037502. doi: 10.7498/aps.62.037502
    [9] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [10] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [11] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [12] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [13] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [14] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [15] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [16] Yao Zhi-Tao, Sun Xin-Rui, Xu Hai-Jun, Jiang Wei-Fen, Xiao Shun-Hua, Li Xin-Jian. The structure and photoluminescence properties of ZnO/silicon nanoporous pillar array. Acta Physica Sinica, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [17] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [19] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
Metrics
  • Abstract views:  6405
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2015
  • Accepted Date:  23 April 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map