搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlN:Er3+松树状纳米结构:发光与磁性多功能材料

丁昕 田子峰 王秋实 刘才龙 崔航

引用本文:
Citation:

AlN:Er3+松树状纳米结构:发光与磁性多功能材料

丁昕, 田子峰, 王秋实, 刘才龙, 崔航

Pine-shaped AlN:Er3+ nanostructure:A multifunctional material with both luminescent and magnetic properties

DING Xin, TIAN Zifeng, WANG Qiushi, LIU Cailong, CUI Hang
PDF
导出引用
  • 采用直流电弧等离子体法,以Al粉和Er2O3粉为原料,在氮气环境下,成功制备出了具有松树状纳米结构的Er3+掺杂AlN (AlN:Er3+)材料。通过X射线衍射,X射线光电子能谱,能量色散光谱,扫描电子显微镜,透射电子显微镜和高分辨率透射电子显微镜的分析,详细测定了松树状纳米结构的成分、形貌特征和显微结构。结果显示,该材料呈现出典型的六方纤锌矿晶体结构,其形态由主干与分支纳米线交织而成,且证实Er3+成功掺入其晶格中。光致发光光谱显示,AlN:Er3+能够发出强烈的绿光(~548 nm),并伴有多个发光峰,分别对应于Er3+内层4f电子跃迁的特征发光峰。根据不同温度下热耦合能级(2H11/2/4S3/24I15/2)发光光谱强度的比值,在温度为293 K时获得最高相对灵敏度,为1.9% K-1。磁学测量表明,AlN:Er3+显现出明显的室温铁磁性。通过第一性原理计算后发现其磁矩主要由Al空位周围N原子的2p轨道电子自旋极化产生。AlN:Er3+松树状纳米结构在光电器件、温敏传感器以及稀磁半导体等多个领域展现出潜在的应用前景。
    Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures were synthesized via a direct current arc discharge plasma method, utilizing a direct reaction between aluminum (Al) and erbium oxide (Er₂O₃) mixed powders in a nitrogen (N2) atmosphere. X-ray diffraction (XRD) analysis revealed a shift in the diffraction peaks towards lower angles for the doped sample compared to undoped AlN, indicative of lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Al, N, and Er, while energy-dispersive X-ray spectroscopy (EDS) quantified the atomic ratio at approximately 46.9:52.8:0.3 for Al:N:Er. The nanostructures, resembling pine trees, measured 5-10 μm in height and 1-3 μm in width, with branch nanowires extending 500 nm to 1 μm in length and 50-100 nm in diameter. These branches, radiating at approximately 60° from the main trunk, were found to grow along the [100] direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacings of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identified distinct emission peaks in the visible (527, 548, and 679 nm) and near-infrared (801, 871, and 977 nm) regions, attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm was measured at 9.63 μs, slightly shorter than other Er3+-doped materials. The nanostructures demonstrated superior temperature sensing capabilities with a maximum relative sensitivity of 1.9% K⁻¹ at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization revealed room-temperature ferromagnetism with a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, suggesting potential for room-temperature spintronic applications. First-principle calculations attributed the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings underscore the potential of AlN:Er3+ pine-shaped nanostructures in diverse applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.
  • [1]

    Li Z J, Tian M, He L L 2011Acta Phys. Sin. 60 098101(in Chinese)[李志杰,田鸣,贺连龙2011 60 098101]

    [2]

    Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013Acta Phys. Sin. 62 217504(in Chinese)[蓝雷雷,胡新宇,顾广瑞,姜丽娜,吴宝嘉2013 62 217504]

    [3]

    Cheng S, Lv H M, Shi Z H, Cui J Y 2012Acta Phys. Sin. 61 126201(in Chinese)[程赛,吕惠民,石振海,崔静雅2012 61 126201]

    [4]

    Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024Acta Phys. Sin 73 196101(in Chinese)[余森,许晟瑞,陶鸿昌,王海涛,安瑕,杨赫,许钪,张进成,郝跃2024 73 196101]

    [5]

    Zhao G, Liang H P, Duan Y F 2023Acta Phys. Sin. 72 096301(in Chinese)[赵罡,梁汉普,段益峰2023 72 096301]

    [6]

    Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024Chin Phys. B 33 106801

    [7]

    Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007J. Appl. Phys. 101 113918

    [8]

    Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006Appl. Phys. Lett. 89 192111

    [9]

    Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021Optik. 243 167455

    [10]

    Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019Chin opt Lett. 17 111602

    [11]

    Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022Opt Mater. 128 112366

    [12]

    Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021J. Lumin. 236 118082

    [13]

    Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023Appl. Phys. Lett. 122 091106

    [14]

    Elhamra F, Rougab M, Gueddouh A 2025J. Phys. Chem. Solids. 197 112442

    [15]

    Rougab M, Gueddouh A 2021Appl. Phys. A 127 969

    [16]

    Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022Phys. Rev. Mater. 6 094603

    [17]

    Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023J. Lumin. 255 119605

    [18]

    MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996Appl. Phys. Lett. 69 2083

    [19]

    Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997J. Lumin. 72-74 284

    [20]

    Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994Appl. Phys. Lett. 65 992

    [21]

    Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999Appl. Phys. Lett. 74 3008

    [22]

    Oliveira J C, Cavaleiro A, Vieira M T 2000Surf. Coat. Tech. 132 99

    [23]

    Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003Opt. Mater. 24 321

    [24]

    Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001Appl. Surf. Sci. 175-176 480

    [25]

    Zanatta A R, Ribeiro C T M, Jahn U 2005J. Appl. Phys. 98 093514

    [26]

    Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012J. Lumin. 132 2367

    [27]

    Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014Appl. Surf. Sci. 307 189

    [28]

    Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5236

    [29]

    Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5361

    [30]

    Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016J. Lumin. 171 42

    [31]

    Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017J. Alloys Compd. 727 735

    [32]

    Hu X W, Tai Z W, Yang C T 2018Mater. Lett. 217 281

    [33]

    Ge S W, Zhang B Z, Yang C T 2019Surf. Coat. Tech. 358 404

    [34]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023J. Alloys Compd. 946 169350

    [35]

    Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009Appl. Phys. Lett. 95 162501

    [36]

    Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022J. Alloys Compd. 907 164461

    [37]

    Narang V, Korakakis D, Seehra M S 2014J. Appl. Phys. 116 213911

    [38]

    Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019J. Lumin. 206 33

    [39]

    Lei W W 2009Ph. D. Dissertation (Changchun:Jilin University) (in Chinese) [类伟巍2009博士学位论文(长春:吉林大学)]

    [40]

    Xu Y S, Yao B B, Cui Q L 2016RSC Adv. 6 113204

    [41]

    Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008J. Nanosci Nanotechno. 8 237

    [42]

    Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010Crystengcomm. 12 511

    [43]

    Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008J. Phys. Chem. C. 112 13353

    [44]

    Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019J. Alloys Compd. 775 498

    [45]

    Deng Y M, Yi S P, Wang Y H, Xian J Q 2014Opt. Mater. 36 1378

    [46]

    Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015J. Mater Sci-mater EI 26 6502

    [47]

    Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006J. Phys. Chem. B 110 21593

    [48]

    Kumari S, Rao A S, Sinha R K 2024ChemPhotoChem. 8 e202300226

    [49]

    Chen B J, Lv S Z, Huang S H 2001J Inorg Mater. 16 223(in Chinese)[陈宝玖,吕少哲,黄世华2001无机材料学报16 223]

    [50]

    Xiao K, Yang Z M 2008Rare Metal Mat Eng. 37 80(in Chinese)[肖凯,杨中民2008稀有金属材料与工程37 80]

    [51]

    Wang L X, Tuo J, Ye Y, Zhao H Q 2019Chin Opt. 12 112

    [52]

    Zhao Y 2022Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese) [赵延2022博士学位论文(上海:同济大学)]

    [53]

    Singh S K, Kumar K, Rai S B 2009Sensor Actuat A-Phys. 149 16

    [54]

    Hua Y B, Yu J S 2021ACS Sustainable Chem Eng. 9 5105

    [55]

    Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019J. Phys. Chem. C 123 29818

    [56]

    Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019J. Am. Ceram. Soc. 102 6564

    [57]

    Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015J. Am. Ceram. Soc. 98 3824

    [58]

    Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021J. Lumin. 236 118089

    [59]

    Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020Appl. Surf. Sci. 527 146825

    [60]

    Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y L 2007J. Semicond. 28 145(in Chinese)[修向前,李斌斌,张荣,陈琳,谢自力,韩平,施毅,郑有炓 2007半导体学报28 145]

    [61]

    Ravi S, Shashikanth F W 2020Mater Lett. 264 127331

    [62]

    Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010Angew. Chem. Int. Ed. 49 173

    [63]

    Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010J. Phys. Chem. C 114 15574

  • [1] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO.  , doi: 10.7498/aps.70.20201966
    [2] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究.  , doi: 10.7498/aps.68.20190019
    [3] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , doi: 10.7498/aps.64.177804
    [4] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , doi: 10.7498/aps.64.077501
    [5] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究.  , doi: 10.7498/aps.62.117802
    [6] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , doi: 10.7498/aps.61.027503
    [7] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , doi: 10.7498/aps.61.198103
    [8] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体.  , doi: 10.7498/aps.61.078106
    [9] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究.  , doi: 10.7498/aps.61.126201
    [10] 陈静, 金国钧, 马余强. 氧空位对钴掺杂氧化锌半导体磁性能的影响.  , doi: 10.7498/aps.58.2707
    [11] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质.  , doi: 10.7498/aps.58.8560
    [12] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究.  , doi: 10.7498/aps.58.8467
    [13] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究.  , doi: 10.7498/aps.57.508
    [14] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , doi: 10.7498/aps.57.7327
    [15] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , doi: 10.7498/aps.57.4539
    [16] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光.  , doi: 10.7498/aps.57.3661
    [17] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算.  , doi: 10.7498/aps.55.873
    [18] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响.  , doi: 10.7498/aps.55.5521
    [19] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , doi: 10.7498/aps.55.6651
    [20] 曾永志, 黄美纯. TM掺杂Ⅱ-Ⅳ-Ⅴ2黄铜矿半导体的电磁性质.  , doi: 10.7498/aps.54.1749
计量
  • 文章访问数:  300
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回
Baidu
map