-
采用直流电弧等离子体法,以Al粉和Er2O3粉为原料,在氮气环境下,成功制备出了具有松树状纳米结构的Er3+掺杂AlN (AlN:Er3+)材料。通过X射线衍射,X射线光电子能谱,能量色散光谱,扫描电子显微镜,透射电子显微镜和高分辨率透射电子显微镜的分析,详细测定了松树状纳米结构的成分、形貌特征和显微结构。结果显示,该材料呈现出典型的六方纤锌矿晶体结构,其形态由主干与分支纳米线交织而成,且证实Er3+成功掺入其晶格中。光致发光光谱显示,AlN:Er3+能够发出强烈的绿光(~548 nm),并伴有多个发光峰,分别对应于Er3+内层4f电子跃迁的特征发光峰。根据不同温度下热耦合能级(2H11/2/4S3/2→4I15/2)发光光谱强度的比值,在温度为293 K时获得最高相对灵敏度,为1.9% K-1。磁学测量表明,AlN:Er3+显现出明显的室温铁磁性。通过第一性原理计算后发现其磁矩主要由Al空位周围N原子的2p轨道电子自旋极化产生。AlN:Er3+松树状纳米结构在光电器件、温敏传感器以及稀磁半导体等多个领域展现出潜在的应用前景。Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures were synthesized via a direct current arc discharge plasma method, utilizing a direct reaction between aluminum (Al) and erbium oxide (Er₂O₃) mixed powders in a nitrogen (N2) atmosphere. X-ray diffraction (XRD) analysis revealed a shift in the diffraction peaks towards lower angles for the doped sample compared to undoped AlN, indicative of lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Al, N, and Er, while energy-dispersive X-ray spectroscopy (EDS) quantified the atomic ratio at approximately 46.9:52.8:0.3 for Al:N:Er. The nanostructures, resembling pine trees, measured 5-10 μm in height and 1-3 μm in width, with branch nanowires extending 500 nm to 1 μm in length and 50-100 nm in diameter. These branches, radiating at approximately 60° from the main trunk, were found to grow along the [100] direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacings of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identified distinct emission peaks in the visible (527, 548, and 679 nm) and near-infrared (801, 871, and 977 nm) regions, attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm was measured at 9.63 μs, slightly shorter than other Er3+-doped materials. The nanostructures demonstrated superior temperature sensing capabilities with a maximum relative sensitivity of 1.9% K⁻¹ at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization revealed room-temperature ferromagnetism with a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, suggesting potential for room-temperature spintronic applications. First-principle calculations attributed the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings underscore the potential of AlN:Er3+ pine-shaped nanostructures in diverse applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.
-
Keywords:
- Aluminum nitride /
- Photoluminescence /
- Temperature sensitive /
- Dilute magnetic semiconductor
-
[1] Li Z J, Tian M, He L L 2011Acta Phys. Sin. 60 098101(in Chinese)[李志杰,田鸣,贺连龙2011 60 098101]
[2] Lan L L, Hu X Y, Gu G R, Jiang L N, Wu B J 2013Acta Phys. Sin. 62 217504(in Chinese)[蓝雷雷,胡新宇,顾广瑞,姜丽娜,吴宝嘉2013 62 217504]
[3] Cheng S, Lv H M, Shi Z H, Cui J Y 2012Acta Phys. Sin. 61 126201(in Chinese)[程赛,吕惠民,石振海,崔静雅2012 61 126201]
[4] Yu S, Xu S R, Tao H C, Wang H T, An X, Yang H, Xu K, Zhang J C, Hao Y 2024Acta Phys. Sin 73 196101(in Chinese)[余森,许晟瑞,陶鸿昌,王海涛,安瑕,杨赫,许钪,张进成,郝跃2024 73 196101]
[5] Zhao G, Liang H P, Duan Y F 2023Acta Phys. Sin. 72 096301(in Chinese)[赵罡,梁汉普,段益峰2023 72 096301]
[6] Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R, Wang K 2024Chin Phys. B 33 106801
[7] Jia W, Han P D, Chi M, Dang S H, Xu B S, Liu X G 2007J. Appl. Phys. 101 113918
[8] Nepal N, Nakarmi M L, Jang H U, Lin J Y, Jiang H X 2006Appl. Phys. Lett. 89 192111
[9] Zhao H L, Zou Z L, Yao J, Guo S W, Wang T, Shen X M, Fu Y C, He H 2021Optik. 243 167455
[10] Li X, Wang X D, Ma H, Chen F F, Zeng X H 2019Chin opt Lett. 17 111602
[11] Wang D, Wang X D, Ma H, Gao X D, Chen J F, Zheng S N, Mao H M, Chen H J, Zeng X H, Xu K 2022Opt Mater. 128 112366
[12] Ma H, Wang X D, Chen F F, Chen J F, Zeng X H, Gao X D, Wang D, Mao H M, Xu K 2021J. Lumin. 236 118082
[13] Vermeersch R, Jacopin G, Robin E, Pernot J, Gayral B, Daudin B 2023Appl. Phys. Lett. 122 091106
[14] Elhamra F, Rougab M, Gueddouh A 2025J. Phys. Chem. Solids. 197 112442
[15] Rougab M, Gueddouh A 2021Appl. Phys. A 127 969
[16] Osetsky Y, Du M H, Samolyuk G, Zinkle S J, Zarkadoula E 2022Phys. Rev. Mater. 6 094603
[17] Wang Z Y, Golovynskyi S, Dong D, Zhang F H, Yue Z Y, Jin L, Wang S, Li B K, Sun Z H, Wu H L 2023J. Lumin. 255 119605
[18] MacKenzie J D, Abernathy C R, Pearton S J, Hommerich U, Wu X, Schwartz R N, Wilson R G, Zavada J M 1996Appl. Phys. Lett. 69 2083
[19] Wu X, Hommerich U, Mackenzie J D, Abernathy C R, Pearton S J, Wilson R G, Schwartz R N, Zavada J M 1997J. Lumin. 72-74 284
[20] Wilson R G, Schwartz R N, Abernathy C R, Pearton S J, Newman N, Rubin M, Fu T, Zavada J M 1994Appl. Phys. Lett. 65 992
[21] Gurumurugan K, Chen H, Harp G R, Jadwisienczak W M, Lozykowski H J 1999Appl. Phys. Lett. 74 3008
[22] Oliveira J C, Cavaleiro A, Vieira M T 2000Surf. Coat. Tech. 132 99
[23] Oliveira J C, Cavaleiro A, Vieira M T, Bigot L, Garapon C, Jacquier B, Mugnier J 2003Opt. Mater. 24 321
[24] Dimitrova V I, Van Patten P G, Richardson H, Kordesch M E 2001Appl. Surf. Sci. 175-176 480
[25] Zanatta A R, Ribeiro C T M, Jahn U 2005J. Appl. Phys. 98 093514
[26] Rinnert H, Hussain S S, Brien V, Legrand J, Pigeat P 2012J. Lumin. 132 2367
[27] Legrand J, Pigeat P, Easwarakhanthan T, Rinnert H 2014Appl. Surf. Sci. 307 189
[28] Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5236
[29] Hussain S S, Pigeat P 2015Mater. Today. Proc. 2 5361
[30] Kallel T, Koubaa T, Dammak M, Pandya S G, Kordesch M E, Wang J, Jadwisienczak W M, Wang Y 2016J. Lumin. 171 42
[31] Fang L P, Yin A Y, Zhu S F, Ding J J, Chen L, Zhang D X, Pu Z, Liu T W 2017J. Alloys Compd. 727 735
[32] Hu X W, Tai Z W, Yang C T 2018Mater. Lett. 217 281
[33] Ge S W, Zhang B Z, Yang C T 2019Surf. Coat. Tech. 358 404
[34] Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023J. Alloys Compd. 946 169350
[35] Lei W W, Liu D, Zhu P W, Chen X H, Zhao Q, Wen G H, Cui Q L, Zou G T 2009Appl. Phys. Lett. 95 162501
[36] Han H C, Wang J Q, Xu C Y, Wang Q S, Zheng H L 2022J. Alloys Compd. 907 164461
[37] Narang V, Korakakis D, Seehra M S 2014J. Appl. Phys. 116 213911
[38] Zhu G, Wu W Z, Xin S Y, Zhang J, Wang Q S 2019J. Lumin. 206 33
[39] Lei W W 2009Ph. D. Dissertation (Changchun:Jilin University) (in Chinese) [类伟巍2009博士学位论文(长春:吉林大学)]
[40] Xu Y S, Yao B B, Cui Q L 2016RSC Adv. 6 113204
[41] Xiao Y, Chen J, Deng S Z, Xu N S, Yang S H 2008J. Nanosci Nanotechno. 8 237
[42] Lei W W, Liu D, Zhu P W, Chen X H, Hao J, Wang Q S, Cui Q L, Zou G T 2010Crystengcomm. 12 511
[43] Lei W W, Liu D, Zhu P W, Wang Q S, Liang G, Hao J, Chen X H, Cui Q L, Zou G T 2008J. Phys. Chem. C. 112 13353
[44] Wang Q S, Wu W Z, Zhang J, Zhu G, Cong R D 2019J. Alloys Compd. 775 498
[45] Deng Y M, Yi S P, Wang Y H, Xian J Q 2014Opt. Mater. 36 1378
[46] Zou H, Wang X S, Hu Y F, Zhu X Q, Sui Y X, Shen D H, Song Z T 2015J. Mater Sci-mater EI 26 6502
[47] Liang Y, Zhang X T, Qin L, Zhang E, Gao H, Zhang Z G 2006J. Phys. Chem. B 110 21593
[48] Kumari S, Rao A S, Sinha R K 2024ChemPhotoChem. 8 e202300226
[49] Chen B J, Lv S Z, Huang S H 2001J Inorg Mater. 16 223(in Chinese)[陈宝玖,吕少哲,黄世华2001无机材料学报16 223]
[50] Xiao K, Yang Z M 2008Rare Metal Mat Eng. 37 80(in Chinese)[肖凯,杨中民2008稀有金属材料与工程37 80]
[51] Wang L X, Tuo J, Ye Y, Zhao H Q 2019Chin Opt. 12 112
[52] Zhao Y 2022Ph. D. Dissertation (Shanghai: Tongji University) (in Chinese) [赵延2022博士学位论文(上海:同济大学)]
[53] Singh S K, Kumar K, Rai S B 2009Sensor Actuat A-Phys. 149 16
[54] Hua Y B, Yu J S 2021ACS Sustainable Chem Eng. 9 5105
[55] Gutierrez-Cano V, Rodriguez F, Gonzalez J A, Valiente R 2019J. Phys. Chem. C 123 29818
[56] Zhou K, Zhang H Y, Liu Y J, Bu Y Y, Wang X F, Yan X H 2019J. Am. Ceram. Soc. 102 6564
[57] Li X M, Cao J K, Wei Y L, Yang Z R, Guo H 2015J. Am. Ceram. Soc. 98 3824
[58] Wang Q S, Li J H, Zhang W, Zheng H L, Cong R D 2021J. Lumin. 236 118089
[59] Wang Q S, Li J H, Zhang J, Zhu G, Zheng H L, Cong R D 2020Appl. Surf. Sci. 527 146825
[60] Xiu X Q, Li B B, Zhang R, Chen L, Xie Z L, Han P, Shi Y, Zheng Y L 2007J. Semicond. 28 145(in Chinese)[修向前,李斌斌,张荣,陈琳,谢自力,韩平,施毅,郑有炓 2007半导体学报28 145]
[61] Ravi S, Shashikanth F W 2020Mater Lett. 264 127331
[62] Lei W W, Liu D, Ma Y M, Chen X, Tian F B, Zhu P W, Chen X H, Cui Q L, Zou G T 2010Angew. Chem. Int. Ed. 49 173
[63] Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T 2010J. Phys. Chem. C 114 15574
计量
- 文章访问数: 300
- PDF下载量: 14
- 被引次数: 0