-
According to first-principles calculation, we study the charge distribution of Li-doped few-layer (1-3 layers) MoS2 and compare it with the results of graphene and BN. It is found that the stable adsorption sites of Li are the top (Mo) site for MoS2 layer, and the hexagonal center for graphene and BN layers. Band structures of pristine MoS2 show that single-layer MoS2 is a direct band gap semiconductor while few-layer MoS2 is an indirect one. As MoS2 is doped, the Fermi level will shift to the conduction band, indicating a charge transfer between Li and MoS2. The charge transfer takes place mostly between Li and the topmost MoS2 layer, which is very similar to that happening between graphene and BN. However, the second and third layer of MoS2, which are far from Li, can acquire about 10% of transferred charges. In contrast, the second and third layer obtain no more than 2% of charges for graphene and BN. Based on the electrostatic theory, we derive for both double and triple layers the formulas of electrostatic energy, which show clearly that only charge transfer between Li and the topmost layer will give the lowest electrostatic energy. Moreover, we calculate the work functions of pristine MoS2, graphene and BN, and find that, despite similar work functions of MoS2 and BN, the larger band gap of BN will make charge transfer between Li and BN harder. The analyses of electrostatic energy and work function show that the charge distribution is dominated by both interlayer electrostatic interaction and work function of material. It is expected that the above results could be helpful for doping layered structures and designing devices.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666
[2] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[3] Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101
[4] Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103
[5] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
[6] Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335
[7] Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
[8] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887
[9] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490
[10] Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608
[11] Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280
[12] Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101
[13] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642
[14] Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147
[16] Lembke D, Kis A 2012 ACS Nano 6 10070
[17] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[18] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[19] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
[20] Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991
[21] Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420
[22] Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263
[23] Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169
[24] Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354
[25] Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603
[26] Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201
[27] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[28] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[29] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 62 117101]
[30] Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803
[31] Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415
[32] Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313
[33] Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706
[34] Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666
[2] Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101
[3] Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101
[4] Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103
[5] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
[6] Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335
[7] Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
[8] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887
[9] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490
[10] Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608
[11] Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280
[12] Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101
[13] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642
[14] Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147
[16] Lembke D, Kis A 2012 ACS Nano 6 10070
[17] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[18] Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934
[19] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
[20] Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991
[21] Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420
[22] Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263
[23] Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169
[24] Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354
[25] Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603
[26] Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201
[27] Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]
[28] Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 62 037103]
[29] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 62 117101]
[30] Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803
[31] Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415
[32] Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313
[33] Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706
[34] Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023
Catalog
Metrics
- Abstract views: 6436
- PDF Downloads: 516
- Cited By: 0