-
Photoinduced enhancement effect of the metal nanoparticle is one of the hot topics in the field of nanomaterial. Interaction between one molecule and a number of metal nanoparticles in different configurations in an applied external field is theoretically investigated in the scheme of density matrix theory, where the molecule and metal nanoparticles are excited simultaneously, and the subsequent charge transfer dynamics is simulated. Besides, the Coulomb interactions between the molecule and metal nanoparticles are calculated in the framework of dipole-dipole approximation. Parameters for metal nanoparticles with a 10 nm radius are used in the text and the polarization of the molecule has the same direction as that of external laser field. It is found that plasmon enhancement is closely related to the relative positions between the molecule and metal nanoparticles. Effects of enhancement due to the surface plasmon is discussed in detail for different configurations of the molecule and metal nanoparticles, and the surface plasmon hybridization, as well as the molecular excitation energy and the frequency of external field applied. Plasmon hybridization levels are formed when metal nanoparticles have strong enough interactions between themselves. The blue shift of the resonant frequency can be found for shorter distance of different metal nanoparticles. In the case that the centers of mass of metal nanoparticles and the molecule are on the same plane, it is found that the population in excited state of the molecule at a resonance frequency increases for a shorter distance between metal nanoparticles and the molecule. On the contrary, in the case that the centers of mass of four metal nanoparticles are located in a plane which is parallel to the x-y plane and above it by 10 nm, the population in the excited state of the molecule on resonant frequency will decrease at a shorter distance between the four metal nanoparticles.
-
Keywords:
- metal nanoparticle /
- plasmon enhancement /
- resonance frequency /
- charge transfer
[1] Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668
[2] Reed M A, Frensley W R, Matyi R J, Randall J N, Seabaugh A C 1989 Appl. Phys. Lett. 54 1034
[3] Cavicchi R, Silsbee R 1984 Phys. Rev. Lett. 52 1453
[4] Cao R X, Zhang X P, Miao B F, Sun L, Wu D, You B, Ding H F 2014 Chin. Phys. B 23 38102
[5] Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]
[6] Ruppin R 1982 J. Chem. Phys. 76 1681
[7] Chew H 1987 J. Chem. Phys. 87 1355
[8] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002
[9] Kelley A M 2008 J. Chem. Phys. 128 224702
[10] Marocico C, Knoester J 2009 Phys. Rev. A 79 053816
[11] Xie H, Chung H, Leung P, Tsai D 2009 Phys. Rev. B 80 155448
[12] Kyas G, May V 2011 J. Chem. Phys. 134 034701
[13] Reil F, Hohenester U, Krenn J R, Leitner A 2008 Nano Lett. 8 4128
[14] Zhang J, Fu Y, Chowdhury M H, Lakowicz J R 2007 J. Phys. Chem. C 111 11784
[15] Zhang J, Fu Y, Lakowicz J R 2006 J. Phys. Chem. C 111 50
[16] Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 63 097301]
[17] Encina E R, Coronado E A 2010 J. Phys. Chem. C 114 3918
[18] Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627
[19] Olk P, Renger J, Wenzel M T, Eng L M 2008 Nano Lett. 8 1174
[20] Lin H Y, Huang C H, Chang C H, Lan Y C, Chui H C 2010 Opt. Express 18 165
[21] Citrin D S 2005 Nano Lett. 5 985
[22] Rüting F 2011 Phys. Rev. B 83 115447
[23] Rasskazov I L, Karpov S V, Markel V A 2014 Phys. Rev. B 90 075405
[24] Lindberg J, Lindfors K, Setalä T, Kaivola M 2007 J. Opt. Soc. Am. A 24 3427
[25] Zelinskyy Y, May V 2011 Nano Lett. 12 446
[26] May V, Schreiber M 1992 Phys. Rev. A 45 2868
[27] Nordlander P, Prodan E 2004 Nano Lett. 4 2209
[28] Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周俊, 金理, 张昊鹏 2012 61 097805]
-
[1] Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668
[2] Reed M A, Frensley W R, Matyi R J, Randall J N, Seabaugh A C 1989 Appl. Phys. Lett. 54 1034
[3] Cavicchi R, Silsbee R 1984 Phys. Rev. Lett. 52 1453
[4] Cao R X, Zhang X P, Miao B F, Sun L, Wu D, You B, Ding H F 2014 Chin. Phys. B 23 38102
[5] Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 62 024203]
[6] Ruppin R 1982 J. Chem. Phys. 76 1681
[7] Chew H 1987 J. Chem. Phys. 87 1355
[8] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002
[9] Kelley A M 2008 J. Chem. Phys. 128 224702
[10] Marocico C, Knoester J 2009 Phys. Rev. A 79 053816
[11] Xie H, Chung H, Leung P, Tsai D 2009 Phys. Rev. B 80 155448
[12] Kyas G, May V 2011 J. Chem. Phys. 134 034701
[13] Reil F, Hohenester U, Krenn J R, Leitner A 2008 Nano Lett. 8 4128
[14] Zhang J, Fu Y, Chowdhury M H, Lakowicz J R 2007 J. Phys. Chem. C 111 11784
[15] Zhang J, Fu Y, Lakowicz J R 2006 J. Phys. Chem. C 111 50
[16] Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 63 097301]
[17] Encina E R, Coronado E A 2010 J. Phys. Chem. C 114 3918
[18] Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627
[19] Olk P, Renger J, Wenzel M T, Eng L M 2008 Nano Lett. 8 1174
[20] Lin H Y, Huang C H, Chang C H, Lan Y C, Chui H C 2010 Opt. Express 18 165
[21] Citrin D S 2005 Nano Lett. 5 985
[22] Rüting F 2011 Phys. Rev. B 83 115447
[23] Rasskazov I L, Karpov S V, Markel V A 2014 Phys. Rev. B 90 075405
[24] Lindberg J, Lindfors K, Setalä T, Kaivola M 2007 J. Opt. Soc. Am. A 24 3427
[25] Zelinskyy Y, May V 2011 Nano Lett. 12 446
[26] May V, Schreiber M 1992 Phys. Rev. A 45 2868
[27] Nordlander P, Prodan E 2004 Nano Lett. 4 2209
[28] Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周俊, 金理, 张昊鹏 2012 61 097805]
Catalog
Metrics
- Abstract views: 6079
- PDF Downloads: 201
- Cited By: 0