搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au/CeO2(111)表面吸附的电荷转移特性

田馨 舒鹏丽 张珂童 曾德超 姚志飞 赵波慧 任晓森 秦丽 朱强 魏久焱 温焕飞 李艳君 菅原康弘 唐军 马宗敏 刘俊

引用本文:
Citation:

Au/CeO2(111)表面吸附的电荷转移特性

田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊

Charge transfer characteristics of Au adsorption on CeO2(111) surface

TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun
PDF
HTML
导出引用
  • Au/CeO2(111)作为一种重要的催化剂体系, 在催化氧化、水气转换反应等多个领域展现出优异的催化性能. 为了深入揭示其催化机理, 特别是在原子尺度上理解活性组分的相互作用. 本文采用密度泛函理论(DFT+U)计算方法, 构建了Au/CeO2(111)体系的原子尺度模型, 通过计算该模型的吸附能、差分电荷密度、巴德电荷以及态密度, 揭示了Au/CeO2(111)的表面吸附行为. 在CeO2(111)的平面区域内, 经过结构弛豫与优化, 确定了5个Au吸附位点. 其中最为稳定的吸附位点并非传统上认为的氧顶位, 而是氧-氧桥位. 在这种吸附构型下, 电荷从Au向Ce4+转移, 导致Ce4+被还原为Ce3+, 伴随着显著的电荷转移现象. 过去的研究更多地关注了平面区域的吸附行为, 而忽视了台阶边缘区域在催化过程中的重要性. 因此, 本研究进一步扩展了研究范围, 深入探讨了4种不同台阶结构对Au吸附的影响, 其中, Type II*和Type III台阶因高度欠配位的Ce原子增强了对Au原子的吸附, 特别是Type III台阶通过显著的电荷转移成为Au的首选吸附位点. 本研究通过构建更全面的Au/CeO2模型, 突破了以往仅关注平面吸附的局限性, 揭示了Au/CeO2在台阶边缘的吸附机制, 为深入理解Au/CeO2(111)的催化机理提供了新的视角.
    Au/CeO2(111), as an important catalyst system, has demonstrated excellent catalytic performances in a variety of fields such as the catalytic oxidation and the water-gas shift reactions. In order to reveal in depth the Au/CeO2(111) catalytic mechanism, especially to understand the interaction of the active components on an atomic scale, in this work, the adsorption properties on the Au/CeO2(111) surface are investigated by calculating the adsorption energy, differential charge density, Bader charge, and the density of states by using density functional theory (DFT+U). First, five adsorption sites of Au/CeO2(111) are identified in the planar region of CeO2(111), and the most stable adsorption configuration is found to be located at the bridging position between surface oxygen atoms (the oxygen-oxygen bridging site), which suggests that Au interacts more closely with the oxygen-oxygen bridging sites. Further, the differential charge density and Bader charge reveal the charge transfer mechanism in the adsorption process. Specifically, the Au atoms are oxidized into Au+, while the Ce4+ ions in the second nearest neighbor of Au are reduced to Ce3+, and the adsorption process is accompanied by a charge transfer phenomenon. Au also exhibits a unique adsorption behavior in the CeO2(111) step-edge region, where a highly under-allocated environment is formed due to the decrease in the coordination number of atoms in the step edge, which enhances the adsorption of Au in a highly under-allocated environment. The adsorption of Au at the step edge is enhanced by the lower coordinated environment due to the reduced coordination number of the atoms at the step edge. By comparing four different types of step structures (Type I, Type II, Type II*, and Type III), it is found that the higher adsorption energy of Au at Type II* site and that at Type III site are both mainly due to the lower coordinated state of Ce atoms at these sites. Charge transfer is also particularly pronounced at the Type III sites. It is also accompanied by electron transferring from Au to Ce4+ ions, making Type III the preferred adsorption site for Au atoms. By constructing a more comprehensive Au/CeO2 model, this study breaks through the previous limitation of focusing only on planar adsorption and reveals the adsorption mechanism of Au/CeO2 at the edge of the step, which provides a new perspective for understanding in depth the catalytic mechanism of Au/CeO2(111).
  • 图 1  (a) CeO2晶格常数随U值的变化; (b) CeO2的带隙随U值的变化

    Fig. 1.  (a) The change of lattice constant of CeO2 with U;(b)the change of gaps of CeO2 with U.

    图 4  (a)纯金(Au)的态密度; (b)纯净的CeO2(111) 表面的态密度; (c) Au/CeO2(111) 表面铈顶位的态密度; (d) Au/CeO2(111) 表面氧-氧桥位的态密度, spin-up 和 spin-down 分别代表自旋向上和自旋向下的电子态

    Fig. 4.  Presents the DOS for various systems: (a) pure gold (Au); (b) pristine CeO2(111) surface; (c) Au/CeO2(111) surface at the cerium top site; (d) Au/CeO2(111) surface at the oxygen-oxygen bridge site, within each plot, spin-up and spin-down represent the electronic states with spin aligned upwards and downwards.

    图 2  CeO2(111)表面p(2×2)的结构, 以及Au原子的潜在吸附位点 (a)斜视图; (b)俯视图, 红色和白色球体分别代表O和Ce

    Fig. 2.  The structure of p(2×2) on CeO2(111) surface and the potential adsorption sites of Au atoms: (a) Side view; (b) top view, the red and white spheres represent O and Ce.

    图 3  Au/CeO2(111)表面上的差分电荷密度 (a)铈顶位(Ce); (b)次氧位(Od); (c)顶氧-铈位(Ou-Ce); (d)氧顶位(Ou); (e)氧-氧桥位(Ou-Ou), 图中紫色部分表示该位置电荷减少, 绿色部分表示电荷的增加

    Fig. 3.  Differential charge density on the Au/CeO2(111) surface: (a) Cerium top site (Ce); (b) sub-oxygen site (Od); (c) top oxygen-cerium site (Ou-Ce); (d) oxygen top site (Ou); (e) oxygen-oxygen bridge site (Ou-Ou), the purple regions in the figure indicate a decrease in charge at that location, while the green regions indicate an increase in charge.

    图 5  (a) I型台阶; (b) II型台阶; (c) II*型台阶; (d) III型台阶构建的化学计量CeO2表面; 台阶上边缘的氧(OT)和靠近台阶下边缘的氧(OE)分别用黄色和绿色代表(左:俯视图;右:侧视图)

    Fig. 5.  Calculated structures of stoichiometric CeO2 vicinal surfaces built for: (a) Type I steps; (b) Type II steps; (c) Type II* steps; (d) Type III steps; the oxygen at the border of the upper (111) terrace (OT) and the oxygen at the edge close to the lower (111) terrace (OE) are highlighted in yellow and green, respectively (left: top view; right: side view).

    图 6  Au/CeO2(111)台阶上的差分电荷密度(左:俯视图;右:侧视图) (a), (b)Type I; (c), (d) Type II ; (e), (f) Type II*; (g), (h) Type III; 图中紫色部分表示该位置电荷减少, 绿色部分表示电荷的增加

    Fig. 6.  Differential charge density on stepped Au/CeO2(111) surfaces (Left: Top view; Right: Side view): (a), (b) Type I step; (c), (d) Type II step; (e), (f) Type II* step; (g), (h) Type III step; the purple regions indicate charge depletion, while the green regions indicate charge accumulation at those locations.

    图 7  CeO2(111)表面上的 (a)Type II*, (b)Type III; (c) Au吸附Type II* OE位点; (d) Au吸附Type III OT位点DOS; spin-up 和 spin-down 分别代表自旋向上和自旋向下的电子态

    Fig. 7.  DOS for: (a) Type II* on CeO2(111) surface; (b) Type III on CeO2(111) surface; (c) Au adsorbed at OE site of Type II*; (d) Au adsorbed at OT site of Type III; spin-up and spin-down represent the electronic states with spin directed upwards and downwards, respectively.

    表 1  Au/CeO2(111)表面吸附构型的能量和几何性质, Eads是吸附能, d[Au-O]和d[Au-Ce]是附着原子到表面原子的距离, d[Ce-O]是铈原子到氧原子的距离

    Table 1.  Energy and geometric properties of adsorption configurations on the Au/CeO2(111) surface, Eads is the adsorption energy, d[Au–O] and d[Au–Ce] are distances from the adsorbed atoms to surface atoms, and d[Ce-O] is the distance between the cerium atom and the oxygen atom.

    Site Eads/eV $ d\text{[Au-O]/}\stackrel{. }{\text{A}} $ $ d\text{[Au-Ce]/}\stackrel{. }{\text{A}} $ $ d\text{[Ce-O]/}\stackrel{. }{\text{A}} $
    Ce 0.39 eV 2×3.15
    1×3.10
    1×2.99
    2×4.86
    1×4.91
    3×2.36
    3×2.39
    Od 0.61 eV 1×2.73
    1×2.75
    1×2.79
    1×3.26
    1×3.28
    1×3.29
    1×5.09
    9×2.38
    Ou-Ce 0.77 eV 2.15 1×3.17
    1×3.98
    1×4.01
    1×4.97
    1×2.34
    1×2.35
    3×2.36
    1×2.37
    Ou 0.95 eV 1.97 1×3.68
    1×3.70
    1×4.07
    1×5.63
    1×2.38
    2×2.42
    2×2.45
    1×2.53
    Ou-Ou 1.19 eV 2×2.14 1×2.84
    2×3.31
    1×4.61
    1×2.41
    2×2.42
    1×2.46
    2×2.55
    下载: 导出CSV

    表 2  Au/CeO2(111)台阶吸附构型的能量和几何性质, Eads是吸附能, d[Au-O] 和d[Au-Ce]是附着原子到表面原子的距离, d[Ce-O]是铈原子到氧原子的距离, 及不同配位数O和Ce原子

    Table 2.  Energy and geometric properties of adsorption configurations on stepped Au/CeO2(111) surfaces. Eads is the adsorption energy, d[Au-O] and d[Au-Ce] are the distances from the adsorbed atom to the surface atoms, d[Ce-O] is the distance between the cerium atom and the oxygen atom, along with the coordination numbers of different O and Ce atoms.

    Step type Eads/eV $ d\text{[Au-O]/}\stackrel{. }{\text{A}} $ $ d\text{[Au-Ce]/}\stackrel{. }{\text{A}} $ $ d\text{[Ce-O]/}\stackrel{. }{\text{A}} $ Ocoordination Cecoordination
    OT of TypeⅠ 1.00 1×2.14 1×3.30
    1×3.36
    1×2.31
    1×2.51
    1×2.53
    3 6
    OE of TypeⅠ 0.97 1×2.16 1×3.31
    1×3.29
    1×2.38
    1×2.39
    1×2.47
    3 6
    OT of TypeⅡ 1.25 1×1.95 1×3.59
    2×3.95
    1×2.51
    2×2.56
    3 6
    OE of TypeⅡ 1.32 1×1.94 1×3.82
    1×3.86
    1×5.95
    2×2.42 2 6
    OT of TypeⅡ* 1.36 1×1.97 1×3.40
    1×3.94
    1×3.98
    2×2.46 3 5
    OE of TypeⅡ* 1.74 1×1.93 1×3.79
    1×5.21
    1×5.38
    1×2.21
    1×2.69
    2 5
    OT of Type Ⅲ 2.15 1×1.94 1×3.73
    1×3.94
    1×4.33
    1×2.42
    1×2.47
    2 5
    OE of Type Ⅲ 2.14 1×1.93 1×3.79
    1×4.00
    1×4.79
    1×2.41
    1×2.49
    3 5
    下载: 导出CSV
    Baidu
  • [1]

    Haruta M, Kobayashi T, Sano H, Yamada N 1987 Chem. Lett. 16 405Google Scholar

    [2]

    Li Y J, Wen H, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z M, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z 2018 Ultramicroscopy 191 51Google Scholar

    [3]

    Zielinski M, Juszczyk W, Kaszkur Z 2022 RSC Adv. 12 5312Google Scholar

    [4]

    Berrichi A, Bailiche Z, Bachir R 2022 Res. Chem. Intermed. 48 4119Google Scholar

    [5]

    Megías-Sayago C, Lolli A, Ivanova S, Albonetti S, Cavani F, Odriozola J A 2019 Catal. Today 333 169Google Scholar

    [6]

    Li Q L, Xie W, Chen G Q, Li Y F, Huang Y J, Chen X D 2015 Nano Res. 8 3075Google Scholar

    [7]

    Liu H P, Cao Z L, Yang S Y, Ren Q Y, Dong Z J, Liu W, Li Z A, Chen X, Luo L L 2024 Nano Res. 17 4986Google Scholar

    [8]

    Kim C, Thompson L 2006 J. Catal. 244 248Google Scholar

    [9]

    Chen Y, Hu P, Lee M H, Wang H 2008 Surf. Sci. 602 1736Google Scholar

    [10]

    Hernández N C, Grau-Crespo R, De Leeuw N H, Sanz J Fdez 2009 Phys. Chem. Chem. Phys. 11 5246Google Scholar

    [11]

    Zhang C, Michaelides A, King D A, Jenkins S J 2010 J. Am. Chem. Soc. 132 2175Google Scholar

    [12]

    Engel J, Francis S, Roldan A 2019 Phys. Chem. Chem. Phys. 21 19011Google Scholar

    [13]

    Shu P L, Tian X, Guo Q, Ren X, Zhao B, Wen H F, Tang J, Li Y J, Yasuhiro S, Ma Z M, Liu J 2024 Phys. Scr. 99 105990Google Scholar

    [14]

    Teng B T, Wu F M, Huang W X, Wen X D, Zhao L H, Luo M F 2012 ChemPhysChem 13 1261Google Scholar

    [15]

    Lu Y, Quardokus R, Lent C S, Justaud F, Lapinte C, Kandel S A 2010 J. Am. Chem. Soc. 132 13519Google Scholar

    [16]

    Lustemberg P G, Pan Y, Shaw B J, Grinter D, Pang C, Thornton G, Pérez R, Ganduglia-Pirovano M V, Nilius N 2016 Phys. ReV. Lett. 116 236101Google Scholar

    [17]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935Google Scholar

    [18]

    Bezkrovnyi O, Bruix A, Blaumeiser D, Piliai L, Schötz S, Bauer T, Khalakhan I, Skála T, Matvija P, Kraszkiewicz P, Pawlyta M, Vorokhta M, Matolínová I, Libuda J, Neyman K M, Kȩpiński L 2022 Chem. Mater. 34 7916Google Scholar

    [19]

    Tibiletti D, Amieiro-Fonseca A, Burch R, Chen Y, Fisher J M, Goguet A, Hardacre C, Hu P, Thompsett D 2005 J. Phys. Chem. B 109 22553Google Scholar

    [20]

    冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基 2023 72 110701Google Scholar

    Feng J, Guo Q, Shu P L, Wen Y, Wen H F, Ma Z M, Li Y J, Liu J 2023 Acta Phys. Sin. 72 110701Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. ReV. Lett. 77 3865Google Scholar

    [22]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71 035105

    [23]

    Zheng Z Y, Wang D, Zhang Y, Yang F, Gong X Q 2020 Chin. J. Cata. 41 1360Google Scholar

    [24]

    Wilson E L, Grau-Crespo R, Pang C L, Cabailh G, Chen Q, Purton J A, Catlow C R A, Brown W A, De Leeuw N H, Thornton G 2008 J. Phys. Chem. C 112 10918Google Scholar

    [25]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [26]

    Owen C J, Jenkins S J 2021 J. Chem. Phys. 154 164703Google Scholar

    [27]

    Chen L J, Tang Y, Cui L, Ouyang C, Shi S 2013 J. of Power Sources 234 69Google Scholar

    [28]

    Kim H Y, Henkelman G 2013 J. Phys. Chem. Lett. 4 216Google Scholar

    [29]

    Kozlov S M, Neyman K M 2014 Phys. Chem. Chem. Phys. 16 7823Google Scholar

    [30]

    Olbrich R, Pieper H H, Oelke R, Wilkens H, Wollschläger J, Zoellner M H, Schroeder T, Reichling M 2014 Appl. Phys. Lett. 104 081910Google Scholar

    [31]

    Barth C, Laffon C, Olbrich R, Ranguis A, Parent Ph, Reichling M 2016 Sci Rep. 6 21165Google Scholar

    [32]

    Shu P L, Guo Q, Tian X, Wei J, Qu Z, Ren X, Wen H F, Tang J, Li Y J, Sugawara Y, Ma Z M, Liu J 2024 Surf. Interfaces 51 104738Google Scholar

    [33]

    Kozlov S M, Viñes F, Nilius N, Shaikhutdinov S, Neyman K M 2012 J. Phys. Chem. Lett. 3 1956Google Scholar

    [34]

    Chu D R, Wang Z Q, Gong X Q 2022 Surf. Sci 722 122096Google Scholar

    [35]

    温焕飞, 菅原康弘, 李艳君 2020 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [36]

    Zhou H, Wang D, Gong X Q 2020 Phys. Chem. Chem. Phys. 22 7738Google Scholar

    [37]

    Zhou C Y, Wang D, Gong X Q 2019 Phys. Chem. Chem. Phys. 21 19987Google Scholar

    [38]

    Piliai L, Matvija P, Dinhová T N, Khalakhan I, Skála T, Doležal Z, Bezkrovnyi O, Kepinski L, Vorokhta M, Matolínová I 2022 ACS Appl. Mater. Interfaces 14 56280Google Scholar

    [39]

    Janssen E M W, Wiegers G A 1978 J. Less-Common Met. 57 P47Google Scholar

  • [1] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究.  , doi: 10.7498/aps.73.20231681
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , doi: 10.7498/aps.70.20211631
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , doi: 10.7498/aps.70.20201939
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , doi: 10.7498/aps.70.20210268
    [6] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究.  , doi: 10.7498/aps.70.20202043
    [7] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , doi: 10.7498/aps.67.20172220
    [8] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究.  , doi: 10.7498/aps.67.20180759
    [9] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.086801
    [10] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.246801
    [11] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较.  , doi: 10.7498/aps.64.087102
    [12] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , doi: 10.7498/aps.62.077101
    [13] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , doi: 10.7498/aps.59.3426
    [14] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析.  , doi: 10.7498/aps.59.7880
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , doi: 10.7498/aps.59.3414
    [16] 吴小霞, 王乾恩, 王福合, 周云松. Cl原子在γ-TiAl(111)表面吸附的第一性原理研究.  , doi: 10.7498/aps.59.7278
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数.  , doi: 10.7498/aps.58.1924
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , doi: 10.7498/aps.57.438
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , doi: 10.7498/aps.57.7794
    [20] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究.  , doi: 10.7498/aps.53.2710
计量
  • 文章访问数:  473
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2024-12-23
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map