-
为了提高无线能量传输系统的传输效率, 将正六边形人工磁导体结构引入非共振双线圈无线能量传输系统中, 展开对空间场调控的研究. 研究结果发现, 在人工磁导体介入非共振双线圈无线能量传输系统后, 在发射线圈和接收线圈之间的电磁场发生了变化, 这是由于近磁场激发了人工磁导体的多个谐振模式, 同时人工磁导体屏蔽了磁场也对空间场的变化有所贡献. 空间场的变化实现了传输效率的提升, 在工作频率为27 MHz、传输距离为3 cm时, 实验验证传输效率提高了22%. 另外, 该系统中人工磁导体多个谐振模式的激发, 可以为无线能量传输系统提供多模式和可便捷调频的工作频率. 在实际应用中, 人工磁导体成本较低, 且易于实现.In order to improve the efficiency of wireless power transfer (WPT) system, the spatial fields are regulated on a two-non-resonant-coil WPT system by hexagon artificial magnetic conductors (AMC). In our configuration, the AMC is located by the side of the two-non-resonant-coil WPT system and close to the transmitter coil. The AMC structure consists of small hexagon copper patches periodically arranged on the dielectric substrate. Each patch is grounded by a via passing through its center hole. Chip capacitors are soldered in the gaps between the adjacent patches. We can design the working frequency of WPT system through the capacitance of these chip capacitors. The results show that the electromagnetic fields are changed between the transmitter coil and the receiver coil in WPT system due to the introducing of the AMC structure. There are two main reasons. First, many resonant modes are excited by near magnetic fields on the AMC structure. Second, near magnetic fields are shielded by the AMC structure. The variation of space electromagnetic field improves the transmission efficiency of WPT system. When the working frequency is 27 MHz and the transmission distance is 3 cm, the experiment verifies that the transmission efficiency increases by 22% in the WPT system with the AMC structure compared with the WPT system without the AMC structure. Simultaneously, the transmission efficiency is raised by 25% at different transmission distances. The simulation results are almost consistent with the experimental results. There is a little difference that the number of resonant modes is different between the simulation and the experiment due to the resistance loss of the chip capacitors in experiment. Therefore, we correct the simulation results under consideration of resistive loss. In addition, the excited multiple resonant modes can supply multiple and adjustable working frequencies in the WPT system with the AMC structure. In practical applications, AMC is low in cost and easy to implement.
-
Keywords:
- artificial microstructure materials /
- artificial magnetic conductors /
- wireless power transfer
[1] Ejaz W, Naeem M, Shahid A, Anpalagan A, Jo M 2017 IEEE Commun. Mag. 55 84
[2] Lu X, Wang P, Niyato D, Kim D I, Han Z 2016 IEEE Commun. Surv. Tut. 18 1413Google Scholar
[3] RamRakhyani A K, Mirabbasi S, Chiao M 2011 IEEE Trans. Biomed. Circ. S. 5 48Google Scholar
[4] Hoang H, Lee S, Kim Y, Choi Y, Bien F 2012 IEEE Trans. Consum. Electr. 58 327Google Scholar
[5] Li S, Mi C C 2015 IEEE J. Em. Sel.Top. P. 3 4Google Scholar
[6] Xie L, Shi Y, Hou Y T, Sherali H D 2012 IEEE Acm. Trans. Netw. 20 1748Google Scholar
[7] Tesla N 1914 U. S. Patent 1 119 732
[8] Brown W C 1984 IEEE Trans. Microw. Theory 32 1230Google Scholar
[9] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83Google Scholar
[10] Song M, Belov P, Kapitanova P 2017 Appl. Phys. Rev. 4 021102Google Scholar
[11] Wang B, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J 2011 Appl. Phys. Lett. 98 254101Google Scholar
[12] Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925Google Scholar
[13] Urzhumov Y, Smith D R 2011 Phys. Rev. B 83 205114Google Scholar
[14] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar
[15] Lipworth G, Ensworth J, Seetharam K, Huang D, Lee J S, Schmalenberg P, Nomura T, Reynolds M S, Smith D R, Urzhumov Y 2014 Sci. Rep. 4 3642
[16] Huang D, Urzhumov Y, Smith D R, Teo K H, Zhang J 2012 J. Appl. Phys. 111 064902Google Scholar
[17] Ranaweera A L A K, Thuc Phi D, Lee J W 2014 J. Appl. Phys. 116 043914Google Scholar
[18] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar
[19] Lapine M, Tretyakov S 2007 IET Microw. Antenn. P. 1 3
[20] Sievenpiper D, Zhang L J, Broas R F J, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory 47 2059Google Scholar
[21] Radi Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar
[22] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antenn. Propag. 58 1551Google Scholar
[23] Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624Google Scholar
[24] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204Google Scholar
Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar
[25] Wu J, Wang B, Yerazunis W S, Teo K H 2013 2013 IEEE Wireless Power Transfer Conference Perugia, Italy, May 15-16, 2013 p155
[26] Lawson J, Yates D C, Mitcheson P D 2015 2015 IEEE Wireless Power Transfer Conference Boulder, USA, May 13−15, 2015 p1
-
-
[1] Ejaz W, Naeem M, Shahid A, Anpalagan A, Jo M 2017 IEEE Commun. Mag. 55 84
[2] Lu X, Wang P, Niyato D, Kim D I, Han Z 2016 IEEE Commun. Surv. Tut. 18 1413Google Scholar
[3] RamRakhyani A K, Mirabbasi S, Chiao M 2011 IEEE Trans. Biomed. Circ. S. 5 48Google Scholar
[4] Hoang H, Lee S, Kim Y, Choi Y, Bien F 2012 IEEE Trans. Consum. Electr. 58 327Google Scholar
[5] Li S, Mi C C 2015 IEEE J. Em. Sel.Top. P. 3 4Google Scholar
[6] Xie L, Shi Y, Hou Y T, Sherali H D 2012 IEEE Acm. Trans. Netw. 20 1748Google Scholar
[7] Tesla N 1914 U. S. Patent 1 119 732
[8] Brown W C 1984 IEEE Trans. Microw. Theory 32 1230Google Scholar
[9] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83Google Scholar
[10] Song M, Belov P, Kapitanova P 2017 Appl. Phys. Rev. 4 021102Google Scholar
[11] Wang B, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J 2011 Appl. Phys. Lett. 98 254101Google Scholar
[12] Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925Google Scholar
[13] Urzhumov Y, Smith D R 2011 Phys. Rev. B 83 205114Google Scholar
[14] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar
[15] Lipworth G, Ensworth J, Seetharam K, Huang D, Lee J S, Schmalenberg P, Nomura T, Reynolds M S, Smith D R, Urzhumov Y 2014 Sci. Rep. 4 3642
[16] Huang D, Urzhumov Y, Smith D R, Teo K H, Zhang J 2012 J. Appl. Phys. 111 064902Google Scholar
[17] Ranaweera A L A K, Thuc Phi D, Lee J W 2014 J. Appl. Phys. 116 043914Google Scholar
[18] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1Google Scholar
[19] Lapine M, Tretyakov S 2007 IET Microw. Antenn. P. 1 3
[20] Sievenpiper D, Zhang L J, Broas R F J, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory 47 2059Google Scholar
[21] Radi Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar
[22] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antenn. Propag. 58 1551Google Scholar
[23] Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624Google Scholar
[24] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204Google Scholar
Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204Google Scholar
[25] Wu J, Wang B, Yerazunis W S, Teo K H 2013 2013 IEEE Wireless Power Transfer Conference Perugia, Italy, May 15-16, 2013 p155
[26] Lawson J, Yates D C, Mitcheson P D 2015 2015 IEEE Wireless Power Transfer Conference Boulder, USA, May 13−15, 2015 p1
计量
- 文章访问数: 8859
- PDF下载量: 72
- 被引次数: 0