-
Diamond, a wide band gap semiconductor material, has been attracting interest in several fields from electrics and optics to biomedicine and quantum computing due to its outstanding properties. These properties of diamond are related to its unique lattice and optically active defect centers. In this paper, the dependence of nitrogen-vacancy (NV) center on measurement temperature is studied by using the low-temperature photoluminescence (PL) spectroscopy in a temperature range of 80–200 K. The results show that with the increase of the measurement temperature, the zero phonon lines of NV defects are red-shifted, its intensity decreases and its full width at half maximum increases. These results are attributed to the synergetic process of the lattice expansion and quadratic electron-phonon coupling. The NV— and NV0 centers have similar values in the quenching activation energy and the thermal softening coefficient, resulting from their similar structures. The small differences may be associated with the electron-phonon coupling. The broadening mechanism of the NV centers is carefully distinguished by
$T^3,\; T^5,\; T^7$ Voigt function fitting with the relation. These results show that the full width at half maximum of the Gaussian component of NV— and NV0 centers are randomly distributed near 0.1 meV and 2.1 meV, respectively, while the full width at half maximum of the Lorentz component of NV— and NV0 centers increase with measurement temperature increasing. The full width at half maximum of Lorentz of NV— and NV0 centers conform to the$ T^3 $ relationship. It can be proved that under the action of the fluctuating field, the zero phonon lines of the NV defects exhibit an obvious homogeneous widening mechanism.-
Keywords:
- diamond /
- nitrogen /
- defect /
- photoluminescence
[1] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 64 247802
Google Scholar
Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802
Google Scholar
[2] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542
Google Scholar
[3] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714
Google Scholar
[4] Davies G 1974 J. Phys. C Solid State Phys. 7 3797
Google Scholar
[5] Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45
Google Scholar
[6] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903
Google Scholar
[7] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201
Google Scholar
[8] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 62 097803
Google Scholar
Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803
Google Scholar
[9] 王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334
Google Scholar
Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334
Google Scholar
[10] 耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384
Google Scholar
Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384
Google Scholar
[11] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756
Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756
Google Scholar
[12] Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103
Google Scholar
[13] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 62 067802
Google Scholar
Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802
Google Scholar
[14] Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108
Google Scholar
[15] Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397
Google Scholar
[16] Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232
Google Scholar
[17] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104
Google Scholar
[18] Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348
Google Scholar
[19] Varshni Y P 1967 Physica 34 149
Google Scholar
[20] Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644
Google Scholar
[21] Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005
Google Scholar
[22] Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908
Google Scholar
[23] Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597
Google Scholar
[24] Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458
[25] Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901
Google Scholar
[26] Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029
Google Scholar
[27] Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1
Google Scholar
[28] Reshchikova M A 2014 J. Appl. Phys. 115 012010
Google Scholar
[29] Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404
Google Scholar
[30] Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351
Google Scholar
-
表 1 金刚石合成参数(1 sccm = 1 mL/min, 1 Torr
$ \approx $ 133.322 Pa)Table 1. Synthetic parameters of diamond.
参数 H2流量/sccm CH4/H2体积分数/% 微波功率/W 压强/Torr 温度/℃ 数值 300 5 3100 90 1060 -
[1] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 64 247802
Google Scholar
Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802
Google Scholar
[2] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542
Google Scholar
[3] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714
Google Scholar
[4] Davies G 1974 J. Phys. C Solid State Phys. 7 3797
Google Scholar
[5] Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45
Google Scholar
[6] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903
Google Scholar
[7] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201
Google Scholar
[8] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 62 097803
Google Scholar
Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803
Google Scholar
[9] 王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334
Google Scholar
Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334
Google Scholar
[10] 耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384
Google Scholar
Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384
Google Scholar
[11] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 49 1756
Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756
Google Scholar
[12] Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103
Google Scholar
[13] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 62 067802
Google Scholar
Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802
Google Scholar
[14] Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108
Google Scholar
[15] Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397
Google Scholar
[16] Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232
Google Scholar
[17] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104
Google Scholar
[18] Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348
Google Scholar
[19] Varshni Y P 1967 Physica 34 149
Google Scholar
[20] Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644
Google Scholar
[21] Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005
Google Scholar
[22] Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908
Google Scholar
[23] Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597
Google Scholar
[24] Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458
[25] Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901
Google Scholar
[26] Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029
Google Scholar
[27] Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1
Google Scholar
[28] Reshchikova M A 2014 J. Appl. Phys. 115 012010
Google Scholar
[29] Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404
Google Scholar
[30] Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351
Google Scholar
计量
- 文章访问数: 9752
- PDF下载量: 198
- 被引次数: 0