-
Using non-equilibrium Green's function method, the charge and spin transport properties through T-shape double quantum dot molecule Aharonov-Bohm (A-B) interference are theoretically investigated. Resonance or anti-resonance can occur at the same location in conductance spectrum by controlling coupling or uncoupling between two quantum dots in T-shape double quantum dot molecule, which is the basis for designing quantum switches. When two identical T-shaped double quantum dot molecules are embedded in two arms of A-B interferometer, respectively, totally destructive interference can appear by taking appropriate magnetic flux. Spin current through the system can be regulated by adjusting quantum dot level, bias between two electrodes and Rashba spin-orbit interaction.
-
Keywords:
- nonequilibrium Green' /
- s function /
- T-shape double quantum dot molecule /
- Aharonov-Bohm interferometer
[1] Yang X F, Liu Y S 2010 Nanoscale Res. Lett. 5 1228
[2] Bai J Y, He Z L, Yang S B 2014 Acta Phys. Sin. 63 017303 (in Chinese) [白继元, 贺泽龙, 杨守斌 2014 63 017303]
[3] He Z L, L T Q, Zhang D 2013 Chin. Phys. B 22 027306
[4] Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302
[5] Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2012 Chin. Phys. B 21 037201
[6] Yonatan D, Massimiliano D V 2009 Phys. Rev. B 79 081302(R)
[7] Li Y X, Choi H Y, Lee H W 2008 Phys. Lett. A 372 2073
[8] Zhang Y, Vishwanath A 2010 Phys. Rev. Lett. 105 206601
[9] Malecki J, Affleck I 2010 Phys. Rev. B 82 165426
[10] Irisnei L F, Orellana P A, Martins G B, Souza F M, Vernek E 2011 Phys. Rev. B 84 205320
[11] Chang B, Wang Q, Xie H, Liang J Q 2011 Phys. Lett. A 375 2932
[12] Yacoby A, Heiblum M, Mahalu D, Hadas S 1995 Phys. Rev. Lett. 74 4047
[13] Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485
[14] Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849
[15] Zhao H K, Wang J, Wang Q 2012 EPL 99 48005
[16] He Z L, L T Q 2012 Phys. Lett. A 376 2501
[17] Zhao H K, Wang J, Wang Q 2014 Phys. Lett. A 378 1553
[18] Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2421 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 57 2421]
[19] Gong W J, Zheng Y S, Liu Yu, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934
[20] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F, Fan M 2009 Chin. Phys. B 18 783
[21] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[22] Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528
-
[1] Yang X F, Liu Y S 2010 Nanoscale Res. Lett. 5 1228
[2] Bai J Y, He Z L, Yang S B 2014 Acta Phys. Sin. 63 017303 (in Chinese) [白继元, 贺泽龙, 杨守斌 2014 63 017303]
[3] He Z L, L T Q, Zhang D 2013 Chin. Phys. B 22 027306
[4] Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302
[5] Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2012 Chin. Phys. B 21 037201
[6] Yonatan D, Massimiliano D V 2009 Phys. Rev. B 79 081302(R)
[7] Li Y X, Choi H Y, Lee H W 2008 Phys. Lett. A 372 2073
[8] Zhang Y, Vishwanath A 2010 Phys. Rev. Lett. 105 206601
[9] Malecki J, Affleck I 2010 Phys. Rev. B 82 165426
[10] Irisnei L F, Orellana P A, Martins G B, Souza F M, Vernek E 2011 Phys. Rev. B 84 205320
[11] Chang B, Wang Q, Xie H, Liang J Q 2011 Phys. Lett. A 375 2932
[12] Yacoby A, Heiblum M, Mahalu D, Hadas S 1995 Phys. Rev. Lett. 74 4047
[13] Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485
[14] Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849
[15] Zhao H K, Wang J, Wang Q 2012 EPL 99 48005
[16] He Z L, L T Q 2012 Phys. Lett. A 376 2501
[17] Zhao H K, Wang J, Wang Q 2014 Phys. Lett. A 378 1553
[18] Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2421 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 57 2421]
[19] Gong W J, Zheng Y S, Liu Yu, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934
[20] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F, Fan M 2009 Chin. Phys. B 18 783
[21] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[22] Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528
Catalog
Metrics
- Abstract views: 5975
- PDF Downloads: 448
- Cited By: 0