-
利用非平衡格林函数结合密度泛函理论, 研究了顺式蒽二噻吩和反式蒽二噻吩分子连接锯齿边碳化硅纳米带的自旋输运特性, 并在铁磁场下观察到自旋向上和自旋向下具有同方向的自旋整流特性. 在铁磁场下, 边缘碳原子或者硅原子双氢原子钝化可以改变锯齿边碳化硅纳米带的本征金属性, 使其转变为半导体. 顺式蒽二噻吩器件和反式蒽二噻吩器件的自旋向上电流-电压特性可以呈现显著的自旋整流效应, 相应的最大自旋整流比分别接近1011和1010. 此外, 由于自旋向上和自旋向下电流值之间的巨大差异, 两个器件的电流-电压特性都在正偏压区域呈现出完美的自旋过滤行为. 以上发现对未来设计自旋功能分子器件具有重要意义.Using non-equilibrium Green's function combined with density functional theory, we investigate the spin-resolved transport properties of the zigzag SiC nanoribbon (zSiCNR) connecting anthradithiophene (ADT) molecules and obtain the giant spin current rectification in the presence of a ferromagnetic field. The dual-hydrogenation on edge C atoms or Si atoms can change the initial metallicity of the pristine zSiCNR with the edge mono-hydrogenation into semiconductivity in the presence of a ferromagnetic field. The up-spin current-voltage characteristic of the cis-ADT device and the trans-ADT device can present the significant rectification, and the corresponding giant spin current rectification ratios are close to 1011 and 1010 respectively. In addition, the current-voltage characteristics of two devices both perform a perfect spin filtering behavior in the positive bias region due to the huge difference between the up-spin current value and the down-spin current value. These findings are of great significance in the functional applications of spin-resolved molecular devices in the future.
-
Keywords:
- SiC nanoribbon /
- spin-resolved transport property /
- spin current rectification /
- spin filtering
[1] Service R 2009 Science 323 1000
Google Scholar
[2] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223
Google Scholar
[3] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312
Google Scholar
[4] 郭超, 张振华, 潘金波, 张俊俊 2011 60 117303
Google Scholar
Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303
Google Scholar
[5] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811
Google Scholar
[6] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829
Google Scholar
[7] Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801
Google Scholar
[8] Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[9] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503
Google Scholar
[10] 左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302
Google Scholar
Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302
Google Scholar
[11] Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570
Google Scholar
[12] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765
Google Scholar
[13] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501
Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501
Google Scholar
[14] Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303
Google Scholar
[15] Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101
Google Scholar
[16] Feringa B L 2020 Adv. Mater. 32 1906416
Google Scholar
[17] Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026
Google Scholar
[18] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365
Google Scholar
[19] ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437
Google Scholar
[20] An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939
Google Scholar
[21] Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402
Google Scholar
[22] Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629
Google Scholar
[23] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750
Google Scholar
[24] Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405
Google Scholar
[25] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103
Google Scholar
[26] Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608
Google Scholar
[27] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245
Google Scholar
[28] Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732
Google Scholar
[29] Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201
Google Scholar
[30] Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953
Google Scholar
[31] Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527
Google Scholar
[32] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18
Google Scholar
[33] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687
Google Scholar
[34] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 67 118501
Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501
Google Scholar
[35] Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36
Google Scholar
[36] Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112
Google Scholar
[37] Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657
Google Scholar
[38] 崔兴倩, 刘乾, 范志强, 张振华 2020 69 248501
Google Scholar
Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501
Google Scholar
[39] Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335
Google Scholar
[40] Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611
Google Scholar
[41] Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670
Google Scholar
[42] Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82
Google Scholar
[43] Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628
Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901
Google Scholar
[45] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207
Google Scholar
[46] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102
Google Scholar
[47] Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114
Google Scholar
[48] Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836
Google Scholar
[49] Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022
Google Scholar
[50] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808
Google Scholar
[51] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412
Google Scholar
[52] Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648
Google Scholar
[53] Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200
Google Scholar
-
图 1 两种器件的几何结构示意图. 左、右黑色实心线框分别是左、右电极, 为不同边缘双氢原子钝化锯齿边碳化硅纳米带的两个晶胞; 自旋向上和自旋向下状态的自旋极化电荷密度差的等值图, 等值均设置为0.05|e| Å–3 (1 Å = 0.1 nm)
Fig. 1. Schematic geometric structures of two devices. The left and right black solid wire frames are the left and the right electrode, which are two unit cells of zigzag SiCnanoribbon under different edge dual-hydrogenation. Isosurface plots of the spin-polarized charge density difference of up-spin and down-spin states with the isovalues all setting at 0.05|e| Å–3 (1 Å = 0.1 nm).
图 2 (a)底部边缘硅原子双氢原子钝化的锯齿边碳化硅纳米和(b)顶部边缘碳原子双氢原子钝化的锯齿边碳化硅纳米的几何结构与自旋能带结构
Fig. 2. Geometric structures and spin-resolved band structures of (a) the zigzag SiC nanoribbon with the dual-hydrogenation on the silicon atom of the bottom edge and (b) the zigzag SiC nanoribbon with the dual-hydrogenation on the carbon atom of the top edge
图 4 (a) 零偏压下左、右电极和中央蒽二噻吩的自旋向上投影态密度; (b) 零偏压下左、右电极和中心蒽二噻吩的自旋向下投影态密度.
Fig. 4. (a) The up-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage; (b) the down-spinprojecteddensity of states of left electrode, right electrode and central anthradithiophene at zero bias voltage.
-
[1] Service R 2009 Science 323 1000
Google Scholar
[2] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223
Google Scholar
[3] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S, Wang L W 2020 Sci. China-Phys. , Mech. Astron. 63 277312
Google Scholar
[4] 郭超, 张振华, 潘金波, 张俊俊 2011 60 117303
Google Scholar
Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303
Google Scholar
[5] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811
Google Scholar
[6] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829
Google Scholar
[7] Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801
Google Scholar
[8] Chen X K, Hu X Y, Jia P J, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[9] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503
Google Scholar
[10] 左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302
Google Scholar
Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302
Google Scholar
[11] Kuang G, Chen S Z, Yan L H, Chen K Q, Shang X S, Liu P N, Lin N 2018 J. Am. Chem. Soc. 140 570
Google Scholar
[12] Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765
Google Scholar
[13] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501
Google Scholar
Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501
Google Scholar
[14] Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303
Google Scholar
[15] Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101
Google Scholar
[16] Feringa B L 2020 Adv. Mater. 32 1906416
Google Scholar
[17] Xin N, Li X X, Jia C C, Gong Y, Li M L, Wang S P, Zhang G Y, Yang J L 2018 Angew. Chem. Int. Ed. 57 14026
Google Scholar
[18] Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365
Google Scholar
[19] ChenQ, LiLL, PeetersFM 2018 Phys. Rev. B 97 085437
Google Scholar
[20] An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939
Google Scholar
[21] Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402
Google Scholar
[22] Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L, Tang L M 2019 Appl. Surf. Sci. 496 143629
Google Scholar
[23] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750
Google Scholar
[24] Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405
Google Scholar
[25] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103
Google Scholar
[26] Magda G Z, Jin X, Hagy I, Vancsó P, Osváth Z, Nemes P, Hwang C, Biró L, Tapasztó L 2014 Nature 514 608
Google Scholar
[27] Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X, Zhang H L 2016 Org. Electron. 37 245
Google Scholar
[28] Liu Q, Cui X Q, Fan Z Q 2020 Phys. Lett. A 384 126732
Google Scholar
[29] Zhou X Y, Liu Y M, Zhou M, Shao H H, Zhou G H 2014 Appl. Phys. Express 7 021201
Google Scholar
[30] Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z, Peeters F M 2020 Nano Energy 75 104953
Google Scholar
[31] Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527
Google Scholar
[32] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18
Google Scholar
[33] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687
Google Scholar
[34] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷 婷, 刘洋 2018 67 118501
Google Scholar
Cui Y, Xia C J, Su Y H, Zhang B Q, Chen A M, Yang A Y, Zhang T T, Liu Y 2018 Acta Phys. Sin. 67 118501
Google Scholar
[35] Peng X F, Chen K Q, Wang X J, Tan S H 2016 Carbon 100 36
Google Scholar
[36] Liao W H, Zhao H P, Ouyang G, Chen K Q, Zhou G H 2012 Appl. Phys. Lett. 100 153112
Google Scholar
[37] Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657
Google Scholar
[38] 崔兴倩, 刘乾, 范志强, 张振华 2020 69 248501
Google Scholar
Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Acta Phys. Sin. 69 248501
Google Scholar
[39] Li J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Carbon 93 335
Google Scholar
[40] Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611
Google Scholar
[41] Mamada M, Katagiri H, Mizukami M, Honda K, Minamiki T, Teraoka R, Uemura T, Tokito S 2013 ACS Appl. Mater. Interfaces 5 9670
Google Scholar
[42] Wang W C, Yeh T T, Liau W L, Chen J T, Hsu C S 2018 Org. Electron. 57 82
Google Scholar
[43] Su G R, Yang S, Li S, Butch C J, Filimonov S N, Ren J C, Liu W 2019 J. Am. Chem. Soc. 141 1628
Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. :Condens. Matter 32 015901
Google Scholar
[45] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207
Google Scholar
[46] Ding Y, Wang Y L 2012 Appl. Phys. Lett. 101 013102
Google Scholar
[47] Sun L, Li Y F, Li Z Y, Li Q X, Zhou Z, Chen Z F, Yang J L, Hou J G 2008 J. Chem. Phys. 129 174114
Google Scholar
[48] Chen W, Zhang H, Ding X L, Yu G T, Liu D, Huang X R 2014 J. Mater. Chem. C 2 7836
Google Scholar
[49] Shen X P, Yu G T, Zhang Z S, Liu J W, Li H, Huang X R, Chen W 2017 J. Mater. Chem. C 5 2022
Google Scholar
[50] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808
Google Scholar
[51] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412
Google Scholar
[52] Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J. Mater. Chem. C 2 6648
Google Scholar
[53] Fan Z Q, Xie F, Jiang X W, Wei Z M, Li S S 2016 Carbon 110 200
Google Scholar
计量
- 文章访问数: 4440
- PDF下载量: 86
- 被引次数: 0