搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运

彭淑平 邓淑玲 刘乾 董丞骐 范志强

引用本文:
Citation:

N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运

彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强

Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution

Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang
PDF
HTML
导出引用
  • 采用第一性原理计算基础上结合非平衡格林函数方法, 开展了N, B原子取代对间苯乙烯低聚物(M-OPE)分子器件量子干涉与自旋输运的调控研究. 研究结果表明N, B原子在中心苯环不同位置取代对M-OPE分子器件原有的相消量子干涉抑制程度不同. 因此, N, B原子在不同位置取代后的器件电导存在较大差异. 研究还发现B原子取代的器件自旋电流值要明显高于N原子取代的器件, 且B原子在特定位置取代后, 器件在负偏压下的自旋电流值要明显大于正偏压下的自旋电流值, 呈现显著的自旋整流效应. 本文得到的N, B原子取代对分子体系量子干涉和自旋输运调控的物理机制, 可以为杂环芳烃在分子电子学中的进一步应用提供理论指导.
    In this paper, the first-principles method based on density functional theory and non-equilibrium Green’s function is used to investigate the modulation of quantum interference and spin transport in N and B atom substituted meta-phenylene (M-OPE) molecular devices. The zero bias spin transmission spectrum of M-OPE molecular device shows that highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are located at higher energy positions on both sides of the Fermi level, and there is a clear transmission spectrum valley (anti resonance peak) on the right side of the Fermi level. This indicates that M-OPE molecules are typical destructive quantum interference molecular systems. Research has found that N and B atoms replace carbon atoms at positions 1, 2, and 3 on the central ring of the molecule, which suppress the original destructive quantum interference of M-OPE molecular device to different extents. The substitution of N and B atoms at position 1 has no effect on the original destructive quantum interference of M-OPE molecular device, while the substitution of N and B atoms at positions 2 and 3 significantly suppresses the original destructive quantum interference of M-OPE molecular device. Therefore, there is a significant difference in the electrical conductivity of devices with N and B atoms at different positions, with the order of electrical conductivity values being N2 > N3 > N1 and B2 > B3 > B1. In this study, it is also found that the spin current value of device with B atom substitution is significantly higher than that of device with N atom substitution. After the substitution of B atom at position 2, the spin current value of the device under negative bias is significantly greater than that under positive bias, exhibiting a significant spin rectification effect. Based on the extended curled arrow rule proposed by O’Driscoll et al. to predict the behavior of quantum interference effects, we explain the physical mechanism by which N and B protons at different positions have different effects on the suppression of quantum interference in M-OPE molecular device. The results of the quantum interference and spin transport regulation of molecular systems by the substitution of B and N atoms can provide theoretical guidance for realizing the further application of heterocyclic aromatic hydrocarbons in molecular electronics.
      通信作者: 范志强, zqfan@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074046)和湖南省研究生科研创新项目(批准号: CXCLY2022141)资助的课题.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046) and the Hunan Provincial Postgraduate Scientific Research and Innovation Project, China (Grant No. CXCLY2022141).
    [1]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [2]

    Haidar E A, Tawfik S A, Stampfl C, Hirao K, Yoshizawa K, Nakajima T, Nakajima T, Soliman K A, El-Nahas A M 2021 Adv. Theor. Simul. 4 2000203Google Scholar

    [3]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [4]

    Li Y, Zhou Y, Li Y, Hong W, Li H 2022 J. Phys. Chem. C 126 6420Google Scholar

    [5]

    李瑞豪, 刘俊扬, 洪文晶 2022 71 067303Google Scholar

    Li R H, Liu J Y, Hong W J 2022 Acta Phys. Sin. 71 067303Google Scholar

    [6]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [7]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [8]

    Hirai M, Tanaka N, Sakai M, Yamaguchi S 2019 Chem. Rev. 119 8291Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Tsuji Y, Okazawa K, Kurino K, Yoshizawa K 2022 J. Phys. Chem. C 126 3244Google Scholar

    [11]

    Shubin N, Emelianov A, Uspenskii Y, Gorbatsevich A 2021 Phys. Chem. Chem. Phys. 23 20854Google Scholar

    [12]

    Ding Z K, Zeng Y J, Pan H, Luo N N, Zeng J, Tang L M, Chen K Q 2022 Phys. Rev. B 106 L121401Google Scholar

    [13]

    Pedersen K G L, Strange M, Leijnse M, Hedegård P, Solomon G C, Paaske J 2014 Phys. Rev. B 90 125413Google Scholar

    [14]

    Polakovsky A, Showman J, Valdiviezo J, Palma J L 2021 Phys. Chem. Chem. Phys. 23 1550Google Scholar

    [15]

    Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M, Chen K Q 2023 Phys. Rev. B 107 104303Google Scholar

    [16]

    Qu F Y, Zhao Z H, Ren X R, Zhang S F, Wang L, Wang D 2022 Phys. Chem. Chem. Phys. 24 26795Google Scholar

    [17]

    Baer R, Neuhauser D 2002 J. Am. Chem. Soc. 124 4200Google Scholar

    [18]

    He R, Wang D, Luo N, Zeng J, Chen K Q, Tang L M 2023 Phys. Rev. Lett. 130 046401Google Scholar

    [19]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [20]

    Zhang W, Zhao Z B, Tan M, Adijiang A, Zhong S, Xu X, Zhao T, Ramya E, Sun L, Zhao X, Fan Z, Xiang D 2023 Chem. Sci. 14 11456Google Scholar

    [21]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503Google Scholar

    [22]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D 2018 J. Phys. Chem. C 122 14965Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508Google Scholar

    [24]

    Wang Y H, Huang H, Yu Z, Zheng J F, Shao Y, Zhou X S, Chen J Z, Li J F 2020 J. Mater. Chem. C 8 6826Google Scholar

    [25]

    Wang X Y, Yao X, Narita A, Müllen K 2019 Acc. Chem. Res. 52 2491Google Scholar

    [26]

    Liu X S, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W J, Lambert C J, Liu S X 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [27]

    Chen Z Z, Wu S D, Lin J L, Chen L C, Cao J J, Shao X, Lambert C J, Zhang H L 2023 Adv. Electron. Mater. 9 2201024Google Scholar

    [28]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H 2015 Nat. Commun. 6 6389Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [31]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107Google Scholar

    [32]

    O’Driscoll L J, Bryce M R 2021 Nanoscale 13 1103Google Scholar

    [33]

    O’Driscoll L J, Sangtarash S, Xu W, Daaoub A, Hong W J, Sadeghi H, Bryce M R 2021 J. Phys. Chem. C 125 17385Google Scholar

    [34]

    Markussen T, Stadler R, Thygesen K S 2010 Nano Lett. 10 4260Google Scholar

    [35]

    von Grotthuss E, John A, Kaese T, Wagner M 2018 Asian J. Org. Chem. 7 37Google Scholar

  • 图 1  N或B原子取代后M-OPE分子结示意图

    Fig. 1.  Schematic diagram of M-OPE molecular junction after N or B atom substitution.

    图 2  零偏压下(a) M-OPE和(b) N1的自旋透射谱. 红线和蓝线分别代表自旋向上和自旋向下

    Fig. 2.  Spin transmission spectra of (a) M-OPE and (b) N1 under zero bias. Red and blue lines represent spin up and spin down, respectively.

    图 3  (a) 零偏压下N2的自旋透射谱; (b) HOMO-up和HOMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Fig. 3.  (a) Spin transmission spectrum of N2 under zero bias; (b) transmission eigenstates of HOMO-up and HOMO-down. The isovalue is fixed at 0.35.

    图 4  (a) 零偏压下N3的自旋透射谱; (b) LUMO-up和LUMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Fig. 4.  (a) Spin transmission spectrum of N3 under zero bias; (b) transmission eigenstates of LUMO-up and LUMO-down. The isovalue is fixed at 0.35.

    图 5  零偏压下(a) B1和(b) B3的自旋透射谱

    Fig. 5.  Spin transmission spectra of (a) B1 and (b) B3 under zero bias.

    图 6  (a) 零偏压下B2的自旋透射谱; (b) LUMO-up和LUMO-down位置的透射本征态. Isovalue的取值固定为0.35

    Fig. 6.  (a) Spin transmission spectrum of B2 under zero bias; (b) transmission eigenstates of LUMO-up and LUMO-down. The isovalue is fixed at 0.35.

    图 7  器件的自旋电流-电压特性 (a) N1; (b) N2; (c) N3; (d) B1; (e) B2; (f) B3

    Fig. 7.  Spin-resolved current-voltage characteristics of devices: (a) N1; (b) N2; (c) N3; (d) B1; (e) B2; (f) B3.

    图 8  B原子在1, 2, 3位置取代的量子干涉效应行为预测

    Fig. 8.  Prediction of quantum interference behavior of B atom substitution at positions 1, 2, and 3.

    Baidu
  • [1]

    闫瑞, 吴泽文, 谢稳泽, 李丹, 王音 2018 67 097301Google Scholar

    Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301Google Scholar

    [2]

    Haidar E A, Tawfik S A, Stampfl C, Hirao K, Yoshizawa K, Nakajima T, Nakajima T, Soliman K A, El-Nahas A M 2021 Adv. Theor. Simul. 4 2000203Google Scholar

    [3]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [4]

    Li Y, Zhou Y, Li Y, Hong W, Li H 2022 J. Phys. Chem. C 126 6420Google Scholar

    [5]

    李瑞豪, 刘俊扬, 洪文晶 2022 71 067303Google Scholar

    Li R H, Liu J Y, Hong W J 2022 Acta Phys. Sin. 71 067303Google Scholar

    [6]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [7]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [8]

    Hirai M, Tanaka N, Sakai M, Yamaguchi S 2019 Chem. Rev. 119 8291Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Tsuji Y, Okazawa K, Kurino K, Yoshizawa K 2022 J. Phys. Chem. C 126 3244Google Scholar

    [11]

    Shubin N, Emelianov A, Uspenskii Y, Gorbatsevich A 2021 Phys. Chem. Chem. Phys. 23 20854Google Scholar

    [12]

    Ding Z K, Zeng Y J, Pan H, Luo N N, Zeng J, Tang L M, Chen K Q 2022 Phys. Rev. B 106 L121401Google Scholar

    [13]

    Pedersen K G L, Strange M, Leijnse M, Hedegård P, Solomon G C, Paaske J 2014 Phys. Rev. B 90 125413Google Scholar

    [14]

    Polakovsky A, Showman J, Valdiviezo J, Palma J L 2021 Phys. Chem. Chem. Phys. 23 1550Google Scholar

    [15]

    Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M, Chen K Q 2023 Phys. Rev. B 107 104303Google Scholar

    [16]

    Qu F Y, Zhao Z H, Ren X R, Zhang S F, Wang L, Wang D 2022 Phys. Chem. Chem. Phys. 24 26795Google Scholar

    [17]

    Baer R, Neuhauser D 2002 J. Am. Chem. Soc. 124 4200Google Scholar

    [18]

    He R, Wang D, Luo N, Zeng J, Chen K Q, Tang L M 2023 Phys. Rev. Lett. 130 046401Google Scholar

    [19]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [20]

    Zhang W, Zhao Z B, Tan M, Adijiang A, Zhong S, Xu X, Zhao T, Ramya E, Sun L, Zhao X, Fan Z, Xiang D 2023 Chem. Sci. 14 11456Google Scholar

    [21]

    Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 073503Google Scholar

    [22]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D 2018 J. Phys. Chem. C 122 14965Google Scholar

    [23]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508Google Scholar

    [24]

    Wang Y H, Huang H, Yu Z, Zheng J F, Shao Y, Zhou X S, Chen J Z, Li J F 2020 J. Mater. Chem. C 8 6826Google Scholar

    [25]

    Wang X Y, Yao X, Narita A, Müllen K 2019 Acc. Chem. Res. 52 2491Google Scholar

    [26]

    Liu X S, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W J, Lambert C J, Liu S X 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [27]

    Chen Z Z, Wu S D, Lin J L, Chen L C, Cao J J, Shao X, Lambert C J, Zhang H L 2023 Adv. Electron. Mater. 9 2201024Google Scholar

    [28]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H 2015 Nat. Commun. 6 6389Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [31]

    Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M, Guo C 2012 Appl. Phys. Lett. 100 063107Google Scholar

    [32]

    O’Driscoll L J, Bryce M R 2021 Nanoscale 13 1103Google Scholar

    [33]

    O’Driscoll L J, Sangtarash S, Xu W, Daaoub A, Hong W J, Sadeghi H, Bryce M R 2021 J. Phys. Chem. C 125 17385Google Scholar

    [34]

    Markussen T, Stadler R, Thygesen K S 2010 Nano Lett. 10 4260Google Scholar

    [35]

    von Grotthuss E, John A, Kaese T, Wagner M 2018 Asian J. Org. Chem. 7 37Google Scholar

  • [1] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用.  , 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [3] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [4] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [5] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流.  , 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [6] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控.  , 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [7] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究.  , 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [8] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉.  , 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [9] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [12] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [13] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [14] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究.  , 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [15] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [16] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究.  , 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [17] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究.  , 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [19] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计.  , 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [20] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究.  , 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
计量
  • 文章访问数:  1625
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-03-12
  • 上网日期:  2024-04-03
  • 刊出日期:  2024-05-20

/

返回文章
返回
Baidu
map