-
According to the characteristics of dredging thermal protection system (DTPS) of hypersonic vehicle leading edge, both the structure of embedded high conductivity materials and that of integrative plate of heat pipe are designed to complete the two kinds of comparative experiments so as to prove the feasibility of the DTPS. As a source of radiation heating, the spherical short arc xenon lamp is simulated for aerodynamic heating. The pure steel leading edge, the embedded copper leading edge, the plate pure steel leading edge, and the integrative plate for heat pipe leading edge are heated respectively. Temperature variations of stagnation point region and tail fins are measured. Experimental results show that DTPS of the embedded high conductivity materials can reduce the temperature of stagnation point region and increase the temperature of the tail fins. It also can achieve the aim of thermal protection of leading edge. The DTPS of integrative plate heat pipe whose working fluid is pure water also can protect the leading edge under the condition of low heat flux. At the huge pressure of vapor, DTPS of the integrative plate of heat pipe may be broken at high heat flux. It is shown that the working fluid of heat pipe can play a key role in the application range for the thermal protection effect.
-
Keywords:
- leading edge /
- dredging thermal protection /
- heat pipes /
- plate
[1] Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙健, 刘伟强 2012 61 124401 ]
[2] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[3] Niblock G A, Reeder J C, Huneidi F 1974 J. Spacecraft Rockets 11 314
[4] Anon 1972 NASA CR-1972-123912
[5] Peeples M E, Reeder J C, Sontag K E T 1979 NASA CR-1979-159096
[6] Clark L T, Glenn G S 1998 AIAA-88-2679
[7] Glass D E, Merrigan M A, Sena J T 1998 NASA CR-1998-207642
[8] Steeves, C A, He, M Y, Valdevit 2007 IMECE
[9] Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]
[10] Liu D H, Shang X C 2012 Acta Aeron. Astron. Sin. 33 19 (in Chinese) [刘冬欢, 尚新春 2012航空学报 33 19]
[11] Luo X P, Cui Z F 2008 Chin. Phys. Lett. 25 2111
[12] Ma K Q, Liu J 2007 Phys. 36 295 (in Chinese) [马坤全, 刘静 2007 物理 36 295]
[13] Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11, 72(in Chinese)[姜贵庆, 艾邦成, 俞继军, 陈连忠 2008 第十一届全国热管会议, 威海 9月7–11日 72]
[14] Li T Q, Hu Z J 2007 Aeros. Mater. Technol. 1 16(in Chinses)[李同起, 胡子君 2007 航空材料 1 16]
[15] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552(in Chinses)[保文星, 朱长纯 2006 55 3552]
[16] Gu C Z, Jin Z S, Lv X Y, Zou G T, Zhang J F, Fang R C 1997 Acta Phys. Sin. 46 1984(in Chinses)[顾长志, 金曾孙, 吕宪义, 邹广田, 张纪法, 方容川 1997 46 1984]
-
[1] Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙健, 刘伟强 2012 61 124401 ]
[2] Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401
[3] Niblock G A, Reeder J C, Huneidi F 1974 J. Spacecraft Rockets 11 314
[4] Anon 1972 NASA CR-1972-123912
[5] Peeples M E, Reeder J C, Sontag K E T 1979 NASA CR-1979-159096
[6] Clark L T, Glenn G S 1998 AIAA-88-2679
[7] Glass D E, Merrigan M A, Sena J T 1998 NASA CR-1998-207642
[8] Steeves, C A, He, M Y, Valdevit 2007 IMECE
[9] Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]
[10] Liu D H, Shang X C 2012 Acta Aeron. Astron. Sin. 33 19 (in Chinese) [刘冬欢, 尚新春 2012航空学报 33 19]
[11] Luo X P, Cui Z F 2008 Chin. Phys. Lett. 25 2111
[12] Ma K Q, Liu J 2007 Phys. 36 295 (in Chinese) [马坤全, 刘静 2007 物理 36 295]
[13] Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11, 72(in Chinese)[姜贵庆, 艾邦成, 俞继军, 陈连忠 2008 第十一届全国热管会议, 威海 9月7–11日 72]
[14] Li T Q, Hu Z J 2007 Aeros. Mater. Technol. 1 16(in Chinses)[李同起, 胡子君 2007 航空材料 1 16]
[15] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552(in Chinses)[保文星, 朱长纯 2006 55 3552]
[16] Gu C Z, Jin Z S, Lv X Y, Zou G T, Zhang J F, Fang R C 1997 Acta Phys. Sin. 46 1984(in Chinses)[顾长志, 金曾孙, 吕宪义, 邹广田, 张纪法, 方容川 1997 46 1984]
Catalog
Metrics
- Abstract views: 7551
- PDF Downloads: 574
- Cited By: 0