-
In this paper, we combine the modified equivalent current approximate method and graphical electromagnetic computing method to solve the electromagnetic scattering problems in the missile target covered with the thermal protective layer. The modified equivalent current approximate method is used to calculate the lossy dielectric and combining graphical electromagnetic method, and using a computer display technology, blanking and occlusion, a three-dimensional surface is projected on a computer screen, and the pixels are calculated. The calculation in three-dimensional space is converted into the calculation in two-dimensional space, thereby greatly reducing the computation time and complexity. The results show that when the incident frequency is low, the thickness of the thermal protection layer does not affect the radar cross section value. When the frequency is increased with the thickness of the thermal protection layer, the radar cross section value continuously decreases, which indicates that the thermal barrier coating is a lossy medium: the bigger the imaginary part of the dielectric, the stronger the ability to consume the energy is and the more obvious the change of missile radar cross section is. When the thermal protective layer has pores, the higher the porosity, the greater the value of the radar cross section is; when the porosity is zero, the value of the radar cross section is minimal; when the porosity is the same, the thinner the thermal protection layer, the bigger the radar cross section is. When the projectile phenomenon occurs, it does not affect the radar cross section.
-
Keywords:
- thermal protection layer /
- radar cross section /
- the modified equivalent current approximation /
- electromagnetic scattering
[1] Sun J, Liu W Q 2014 Acta Phys. Sin. 63 094401 (in Chinese) [孙健, 刘伟强 2014 63 094401]
[2] Wei Z W, Xiao J, Liu J J, Fan L E 2006 Aero Wea. 2 50 (in Chinese) [魏仲委, 肖军, 刘建杰, 樊来恩 2006 航空兵器 2 50]
[3] Sayar M, Seo D, Ogawa K 2009 NDT & E. Inter. 42 398
[4] Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 5511
[5] Wang Z L, Zhou M, Gao C Y, Zhang W 2012 Chin. Phys. B 21 064202
[6] Li X F, Xie Y J, Wang P, Yang R 2008 Acta Phys. Sin. 57 2930 (in Chinese) [李晓峰, 谢拥军, 王鹏, 杨瑞 2008 57 2930]
[7] Wu Z S, Zhang X D, Wu C K 1997 Chin. Phys. Lett. 14 32
[8] Li X F, Xie Y J, Fan J 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君 2009 58 908]
[9] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[10] Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431
[11] Meana, J G, Martinez-Lorenzo J A, Las-Heras F, Rappaport C 2010 IEEE Trans. Anten. Propag. 58 3757
[12] Rius J M, Ferrando M, Jofre L 1993 IEEE Trans. Anten. Propag. Mag. 35 7
[13] Li P, Luo F, Wang X Y, Zhou W C, Zhu D M 2007 Rare Metal. Mater. Engin. 36 623 (in Chinese) [李鹏, 罗发, 王晓艳, 周万城, 朱东梅 2007 稀有金属材料与工程 36 623]
[14] Yang Y E 2013 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [杨玉娥 2013 博士学位论文 (北京: 北京工业大学)]
[15] Meana J G, Martinez-Lorenzo J A, Las-Heras F 2010 Elec. Waves. Propag. Comp. Matt. 21 208
[16] Chen K S 2007 Electromagnetic Fields and Waves (Beijing: High Education Press) pp239-247 (in Chinese) [陈抗生 2007 电磁场与电磁波 (北京: 高等教育出版社) 第239–247页]
[17] Wang W X, Zhu K L 2001 Missile Encyclopedic Dictionary (Beijing: China Astronautic Publishing Press) pp52-60 (in Chinese) [汪维勋, 朱坤岭 2001 导弹百科词典 (北京: 中国宇航出版社) 第52–60页]
-
[1] Sun J, Liu W Q 2014 Acta Phys. Sin. 63 094401 (in Chinese) [孙健, 刘伟强 2014 63 094401]
[2] Wei Z W, Xiao J, Liu J J, Fan L E 2006 Aero Wea. 2 50 (in Chinese) [魏仲委, 肖军, 刘建杰, 樊来恩 2006 航空兵器 2 50]
[3] Sayar M, Seo D, Ogawa K 2009 NDT & E. Inter. 42 398
[4] Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 5511
[5] Wang Z L, Zhou M, Gao C Y, Zhang W 2012 Chin. Phys. B 21 064202
[6] Li X F, Xie Y J, Wang P, Yang R 2008 Acta Phys. Sin. 57 2930 (in Chinese) [李晓峰, 谢拥军, 王鹏, 杨瑞 2008 57 2930]
[7] Wu Z S, Zhang X D, Wu C K 1997 Chin. Phys. Lett. 14 32
[8] Li X F, Xie Y J, Fan J 2009 Acta Phys. Sin. 58 908 (in Chinese) [李晓峰, 谢拥军, 樊君 2009 58 908]
[9] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[10] Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431
[11] Meana, J G, Martinez-Lorenzo J A, Las-Heras F, Rappaport C 2010 IEEE Trans. Anten. Propag. 58 3757
[12] Rius J M, Ferrando M, Jofre L 1993 IEEE Trans. Anten. Propag. Mag. 35 7
[13] Li P, Luo F, Wang X Y, Zhou W C, Zhu D M 2007 Rare Metal. Mater. Engin. 36 623 (in Chinese) [李鹏, 罗发, 王晓艳, 周万城, 朱东梅 2007 稀有金属材料与工程 36 623]
[14] Yang Y E 2013 Ph. D. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [杨玉娥 2013 博士学位论文 (北京: 北京工业大学)]
[15] Meana J G, Martinez-Lorenzo J A, Las-Heras F 2010 Elec. Waves. Propag. Comp. Matt. 21 208
[16] Chen K S 2007 Electromagnetic Fields and Waves (Beijing: High Education Press) pp239-247 (in Chinese) [陈抗生 2007 电磁场与电磁波 (北京: 高等教育出版社) 第239–247页]
[17] Wang W X, Zhu K L 2001 Missile Encyclopedic Dictionary (Beijing: China Astronautic Publishing Press) pp52-60 (in Chinese) [汪维勋, 朱坤岭 2001 导弹百科词典 (北京: 中国宇航出版社) 第52–60页]
Catalog
Metrics
- Abstract views: 6374
- PDF Downloads: 323
- Cited By: 0