搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的托卡马克偏滤器靶板热负荷预测研究

吴阳海 杜海龙 薛雷 李佳鲜 薛淼 郑国尧

引用本文:
Citation:

基于机器学习的托卡马克偏滤器靶板热负荷预测研究

吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧

Machine Learning-Based Prediction of Heat Load on Tokamak Divertor Target Plates

WU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, ZHENG Guoyao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文首次针对HL-3装置,采用机器学习方法预测偏滤器靶板等离子体参数,为未来快速预测大型聚变堆偏滤器热负荷奠定基础。将机器学习应用于边缘等离子体物理中,可以显著缩短大型边缘程序SOLPS-ITER模拟所需的时间,从几周、几个月甚至半年缩短至毫秒级。研究发现,通过增加内外偏滤器区的辐射损失作为模型的输入参数,能够明显提高预测精度(超过90%),同时增强训练模型的适用性,可以同时精确预测内外偏滤器靶板热流,并验证了该特征参数与偏滤器靶板物理量之间的依赖关系。该工作不仅为偏滤器物理研究提供了有效的方法,也为未来跨装置预测偏滤器靶板参数提供了坚实的基础。
    The SOLPS-ITER edge plasma simulation code has become a primary tool for divertor physics design and target plate heat load prediction in fusion research. However, SOLPS-ITER- based divertor design requires not only substantial computational time but also intensive hardware resources, which fundamentally limits its application in advancing divertor optimization, particularly in large-scale fusion reactor divertor design. In this paper, the machine learning method is used for the first time to predict the plasma parameters of the divertor target plate for HL-3, which provides a theoretical basis for predicting the heat load of divertor in large fusion reactor in the future. Based on the simulation of the edge plasma code SOLPS-ITER, we first build a database of HL-3 edge plasma parameters, including the upstream inner/outer midplane region and divertor target region. Then, we apply the machine learning method and combine with the database to develop an artificial neural network model. Finally, the artificial neural network is used to train a model using the boundary plasma parameters of the HL-3 device, and the heat load of the divertor target plate is predicted by the given upstream plasma parameters.
    This work can effectively shorten the time for the edge plasma code SOLPS-ITER to simulate the edge plasma from weeks, months or even half a year to several ms. In this work, a multi-layer perceptron (MLP) model was established with different input parameters to predict the electron temperature, density and parallel heat flux of the inner and outer divertor target plates. It is found that reasonably increasing the upstream plasma parameters as the input to the model can not only enhance the generalization ability of the model and improve the accuracy of model prediction (both reaching more than 90%), but also verify the dependence between the upstream plasma parameters and the divertor target physical quantities. In addition, a more stable ResMLP model is established on the basis of MLP. This work proves the feasibility of using the neural network to predict the heat load of the divertor target plate.
  • [1]

    高翔, 万元熙, 丁宁, 彭先觉2018中国工程科学20 25

    [2]

    Kuang A Q, Ballinger S, Brunner D, Canik J, Creely A J, Gray T, Greenwald M, Hughes J W, Irby J, LaBombard B, Lipschultz B, Lore J D, Reinke M L, Terry J L, Umansky M, Whyte D G, Wukitch S 2020 J. Plasma Phys. 86 865860505

    [3]

    Du H L, Li J X, Xue L, Bonnin X, Zheng G Y, Xiao G L, Fan D M, Tong R H, Xue M, Song X, Wang S, Wu N, Ji X Q, Chen W, Zhong W L 2025 Nucl. Fusion 65 036023

    [4]

    Shi B, Yang Z D, Zhang B, Yang C, Gan K F, Chen M W, Yang J H, Zhang H, Qi LJ L, Gong X Z, Zhang X D, Wang W H 2017Chin. Phys. Lett. 34 095201

    [5]

    Pitts R A, Kukushkin A, Loarte A, Martin A, Merola M, Kessel C E, Komarov V, Shimada M 2009Phys. Scr. T138 014001

    [6]

    Hayashi Y, Masuzaki S, Kobayashi M, Kawamura G, Mukai K, Tanaka H, Murase T 2025Plasma Phys. Control. Fusion 67 025010

    [7]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真2013 62 245206

    [8]

    Chen W T, Sun J Z, Gao F, Peng L, Wang D Z 2022 Chin. Phys. B 31 075204

    [9]

    Wang M, Nie Q Y, Huang T, Wang X G, Zhang Y J 2024 Chin. Phys. B 33 035204

    [10]

    Si H, Ding R, Senichenkov I, Rozhansky V, Molchanov P, Liu X J, Jia G Z, Sang C F, Mao S F, Chan V 2022Nucl. Fusion 62026031

    [11]

    Peng L, Sun Z, Sun J Z, Maingi R, Gao F, Bonnin X, Chang H Y, Wang W K, Liu J Y 2024Chin. Phys. B 33 115201

    [12]

    Moscheni M, Meineri C, Wigram M, Carati C, De Marchi E, Greenwald M, Innocente P, LaBombard B, Subba F, Wu H, Zanino R 2022Nucl. Fusion 62 056009

    [13]

    Coster D P 2016Contrib. Plasma Phys 56 790

    [14]

    马锐垚, 王鑫, 李树, 勇珩, 上官丹骅2024 73 072802

    [15]

    Li H, Fu Y L, Li J Q, Wang Z X 2023Chin. Phys. Lett 40125201

    [16]

    陈俊杰, 胡文慧, 肖建元, 郭笔豪, 肖炳甲2020计算机系统应用29 21

    [17]

    Liu B, Wang Y X 2024Chin. Phys. B 33 084401

    [18]

    Yan Z P, Wang Q Y, Yu X Q, Li J Z 2024 Chin. Phys. Lett 41 098901

    [19]

    Yue J C, Chen R K, Ma D K, Hu S Q 2025Chin. Phys. Lett 42036301

    [20]

    Bonnin X, Dekeyser W, Pitts R, Coster D, Voskoboynikov S, Wiesen S 2016Plasma Fusion Res. 11 1403102

    [21]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006Contrib. Plasma Phys. 46 3

    [22]

    Sytova E, Senichenkov I, Kaveeva E, Rozhansky V, Veselova I, Voskoboynikov S, Coster D 201643rd EPS Conference on Plasma Physics Liege, Belgium, July 4–8, 2016 P1.054

    [23]

    Stangeby P C, Sang C F 2017Nucl. Fusion 57 056007

    [24]

    马逐曦2023工业场景下铝板带表面缺陷的多尺度深度学习视觉检测方法研究博士学位论文(长沙:中南大学)

    [25]

    Meha D, Manan S 2021Clin. eHealth 4 1

    [26]

    Naskath J, Sivakamasundari G, Begum A A S 2022Wirel. Pers. Commun. 128 2913

    [27]

    Glorot X, Bordes A, Bengio Y 2011The 14th International Conference on Artificial Intelligence and Statistics Fort Lauderdale, FL, USA, April 11–13, 2011 p315

    [28]

    Nair V, Hinton G E 2010The 27th International Conference on Machine Learning (ICML) Haifa, Israel, June 21--24, 2010 P807

    [29]

    Hochreiter S 1998Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6 107

    [30]

    Krizhevsky A, Sutskever I, Hinton G E 2017Commun. ACM 6084

    [31]

    Ren J J, Wang N 2018Gansu Gaoshi Xuebao 23 61

    [32]

    Touvron H, Bojanowski P, Caron M, Cord M, El-Nouby A, Grave E, Izacard G, Joulin A, Synnaeve G, Verbeek J, Jégou H 2022IEEE Trans. Pattern Anal. Mach. Intell. 45 5314.

  • [1] 刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东. 卷积神经网络辅助无机晶体弹性性质预测.  , doi: 10.7498/aps.74.20250127
    [2] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别.  , doi: 10.7498/aps.74.20241458
    [3] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , doi: 10.7498/aps.74.20241581
    [4] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [5] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , doi: 10.7498/aps.73.20240747
    [6] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [7] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟.  , doi: 10.7498/aps.73.20240156
    [8] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [9] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [10] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , doi: 10.7498/aps.71.20220670
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [12] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , doi: 10.7498/aps.70.20210879
    [13] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测.  , doi: 10.7498/aps.70.20210403
    [14] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , doi: 10.7498/aps.70.20210711
    [15] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , doi: 10.7498/aps.69.20200690
    [16] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , doi: 10.7498/aps.57.6120
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响.  , doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用.  , doi: 10.7498/aps.50.674
计量
  • 文章访问数:  46
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map