搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应

许强 苗润才 张亚妮

引用本文:
Citation:

六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应

许强, 苗润才, 张亚妮

High birefringence and negative dispersion effect of hexagonal honeycomb lattice photonic crystal fiber

Xu Qiang, Miao Run-Cai, Zhang Ya-Ni
PDF
导出引用
  • 设计了一种六角点阵蜂窝状包层光子晶体光纤, 该光纤中心缺失一根空气柱形成纤芯, 包层由椭圆空气孔和小圆空气孔组成. 基于全矢量有限元法并结合各向异性完美匹配层边界条件, 对其双折射、色散、非线性系数、 约束损耗和模场等特性进行了数值模拟; 计算了具有相同参数的椭圆状包层光子晶体光纤的双折射、色散及非线性系数. 结果发现, 若调整光纤结构参数为孔间隔Λ =1.15 μm, 空气孔椭圆率η =0.5, 相对孔间隔比f=0.48, 小圆孔直径d1=0.4 μm时, 在波长1.55 μm处, 该光纤的双折射B高达1.02×10-2, 比传统光纤高约两个数量级, 同时, 该光纤在低损耗通信窗口C波段呈现负色散和负色散斜率, 其色散斜率在整个C波段附近在 -0.132— -0.121 ps·km-1·nm-2范围内波动, 非线性系数为45.7 km-1·W-1, 约束损耗接近102 dB·km-1. 蜂窝状包层比椭圆状包层光子晶体光纤的双折射及大负色散特性明显提高, 非线性系数低, 更有利于进行色散补偿.
    A novel hexagonal honeycomb lattice photonic crystal fiber is proposed, which is composed of a central defect core, a cladding with elliptical air-hole and small round air-holes. Based on the full vector finite element method with anisotropic perfectly matched layers, its birefringence, dispersion, nonlinearity, leakage loss and mode field are numerically investigated. We compare hexagonal honeycomb lattice photonic crystal fiber and hexagonal elliptical lattice photonic crystal fiber, both of which have the same structure parameters. Numerical results indicate that the proposed fiber shows high birefringence and negative dispersion effect. The birefringence is 1.02× 10-2, both its dispersion and dispersion slope are negative, the dispersion slope values are between -0.132- -0.121 ps·km-1·nm-2 over C band, the leakage loss is close to 102 dB·m-1 and the non-linear coefficient is 45.7 km-1·W-1 at a wavelength of 1.55 μm, if the parameter is selected as Λ =1.15 μm, η =0.5, f=0.48, and d1=0.4 μm. It is found that the hexagonal honeycomb lattice photonic crystal fiber easily obtains high birefringence, large negative dispersion and low non-linear coefficient. It is demonstrated that the hexagonal honeycomb lattice photonic crystal fiber has huge potential in designing dispersion compensation photonic crystal fiber.
    • 基金项目: 陕西省科技攻关计划(批准号: 2011K02-08, 2010K01-078)、 陕西省教育厅自然科学基金(批准号: 2010JK403)、 宝鸡市科技计划(批准号: 2010bj02)和宝鸡文理学院重点科研计划(批准号: ZK11142)资助的课题.
    • Funds: Project supported by the Key Science and Technology Program of Shaanxi Province, China (Grant Nos. 2011K02-08, 2010K01-078), the Natural Science Foundation of the Education Department of Shaanxi Province, China (Grant No. 2010JK403), the Science and Technology Program of Baoji, China (Grant No. 2010bj02) and the Science Foundation of Baoji University of Science and Arts, China (Grant No. ZK11142).
    [1]

    Knight J C, Russell P S 2002 Science 296 276

    [2]

    Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]

    [3]

    Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛, 侯蓝田, 刘兆伦, 王伟, 魏红彦, 马景瑞 2007 56 2275]

    [4]

    Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王健, 雷乃光, 余重秀 2007 56 946]

    [5]

    Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪, 刘小毅, 张民, 叶培大 2006 55 6447]

    [6]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]

    [7]

    Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]

    [8]

    Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]

    [9]

    Zhang L C, Zhou G Y, Hou L T 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 周桂耀, 侯蓝田 2011 60 054217]

    [10]

    Selleri S, Petracek J 2001 Opt. Quantum Electron. 33 378

    [11]

    Zhang Y N 2008 J. Mod. Opt. 55 3563

    [12]

    Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843

    [13]

    Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese) [姜凌红, 侯蓝田, 杨倩倩 2010 59 4726]

    [14]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [15]

    Tan X L, Geng Y F, Zhou J 2011 Opt. Laser Technol. 43 1331

    [16]

    Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893

    [17]

    Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345 (in Chinese) [杨倩倩, 侯蓝田 2009 58 8345]

    [18]

    Yan H F, Yu C Y, Tian H D, Liu Y M, Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese) [闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红 2010 59 3273]

    [19]

    Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63

    [20]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A: Pure Appl. Opt. 6 997

    [21]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C 2004 J. Opt. Lett. 29 1336

    [22]

    Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065

    [23]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

  • [1]

    Knight J C, Russell P S 2002 Science 296 276

    [2]

    Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]

    [3]

    Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛, 侯蓝田, 刘兆伦, 王伟, 魏红彦, 马景瑞 2007 56 2275]

    [4]

    Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王健, 雷乃光, 余重秀 2007 56 946]

    [5]

    Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪, 刘小毅, 张民, 叶培大 2006 55 6447]

    [6]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]

    [7]

    Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]

    [8]

    Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]

    [9]

    Zhang L C, Zhou G Y, Hou L T 2011 Acta Phys. Sin. 60 054217 (in Chinese) [张立超, 周桂耀, 侯蓝田 2011 60 054217]

    [10]

    Selleri S, Petracek J 2001 Opt. Quantum Electron. 33 378

    [11]

    Zhang Y N 2008 J. Mod. Opt. 55 3563

    [12]

    Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843

    [13]

    Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese) [姜凌红, 侯蓝田, 杨倩倩 2010 59 4726]

    [14]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [15]

    Tan X L, Geng Y F, Zhou J 2011 Opt. Laser Technol. 43 1331

    [16]

    Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893

    [17]

    Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345 (in Chinese) [杨倩倩, 侯蓝田 2009 58 8345]

    [18]

    Yan H F, Yu C Y, Tian H D, Liu Y M, Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese) [闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红 2010 59 3273]

    [19]

    Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63

    [20]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A: Pure Appl. Opt. 6 997

    [21]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C 2004 J. Opt. Lett. 29 1336

    [22]

    Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065

    [23]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

  • [1] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器.  , 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [2] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究.  , 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [3] 李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江. 隔行分层填充的太赫兹超高双折射多孔光纤.  , 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [4] 苏伟, 娄淑琴, 邹辉, 韩博琳. 一种带葡萄柚空气孔的高双折射ZrF4-BaF2-LaF3-AlF3-NaF光子准晶光纤.  , 2014, 63(14): 144202. doi: 10.7498/aps.63.144202
    [5] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤.  , 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [6] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [7] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究.  , 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [8] 曹晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究.  , 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [9] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析.  , 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析.  , 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [11] 张亚妮. 低损耗低非线性高负色散光子晶体光纤的优化设计.  , 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [12] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤.  , 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [13] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究.  , 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [14] 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义. 高双折射纳米结构光子晶体光纤特性研究.  , 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [15] 张亚妮. 新型矩形点阵光子晶体光纤的高双折射负色散效应.  , 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [16] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应.  , 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [17] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗.  , 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [18] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究.  , 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [19] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟.  , 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [20] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.  , 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
计量
  • 文章访问数:  9767
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-20
  • 修回日期:  2012-04-27
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map