Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback

Liu Ming Zhang Ming-Jiang Wang An-Bang Wang Long-Sheng Ji Yong-Ning Ma Zhe

Citation:

Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback

Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The chaotic ultra-wideband (UWB) pulse signals are generated by directly modulating semiconductor laser subjected to optical feedback. We simulate that the -10 dB bandwidth and the central frequency of the RF spectrum of the chaotic UWB signals are influenced by the bias current and feedback strength. The research results demonstrate that the -10 dB bandwidth of the RF spectrum of the UWB signals increases with the increases of the bias current of the semiconductor laser and the feedback, the central frequency also increases with the increases of the bias current and the feedback. In our experiments, chaotic UWB signals with steerable and flatted power spectrum are generated by directly modulating DFB-LD subjected to optical feedback. The power spectrum of UWB signals is fully compliant with the FCC indoor mask, while a large fractional bandwidth of 133% and a central frequency of 6.6 GHz are achieved. The central frequency and -10 dB bandwidth of the chaotic UWB signals are on a large scale tunable by adjusting the bias current and feedback power. In addition, the chaotic UWB signals transmit through a 34.08 km single mode fiber and the power spectrum does not have any discrete spectrum line.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 60927007, 60908014, 61108027), the National Basic Research Program of China (Grant No. 2010CB327806), the China Postdoctoral Science Foundation, the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China (Grant No. 2012lfjyt08), and the Key Laboratory of Opto-electronic Information Technology, Ministry of Education (Tianjin University), China (Grant No. 2012KFKT004).
    [1]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [2]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36

    [3]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [4]

    Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219

    [5]

    Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36

    [6]

    Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062

    [7]

    Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447

    [8]

    Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651

    [9]

    Pan S L, Yao J P 2009 Opt. Lett. 34 1312

    [10]

    Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [11]

    Juan Y S, Lin F Y 2010 Opt. Express 18 9664

    [12]

    Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870

    [13]

    Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643

    [14]

    Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063

    [15]

    Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754

    [16]

    Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803

    [17]

    Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1

    [18]

    Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657

    [19]

    Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217

    [20]

    Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117

    [21]

    Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692

    [22]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734

    [23]

    Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 60 124212]

    [24]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [25]

    Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 61 084204]

    [26]

    Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488

    [27]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [28]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [29]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]

    [30]

    Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697

    [31]

    Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369

    [32]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [33]

    Win M Z 2002 IEEE Commun. Lett. 6 526

    [34]

    Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510

  • [1]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [2]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36

    [3]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [4]

    Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219

    [5]

    Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36

    [6]

    Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062

    [7]

    Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447

    [8]

    Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651

    [9]

    Pan S L, Yao J P 2009 Opt. Lett. 34 1312

    [10]

    Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [11]

    Juan Y S, Lin F Y 2010 Opt. Express 18 9664

    [12]

    Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870

    [13]

    Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643

    [14]

    Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063

    [15]

    Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754

    [16]

    Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803

    [17]

    Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1

    [18]

    Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657

    [19]

    Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217

    [20]

    Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117

    [21]

    Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692

    [22]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734

    [23]

    Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 60 124212]

    [24]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [25]

    Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 61 084204]

    [26]

    Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488

    [27]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [28]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [29]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]

    [30]

    Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697

    [31]

    Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369

    [32]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [33]

    Win M Z 2002 IEEE Commun. Lett. 6 526

    [34]

    Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510

  • [1] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [3] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [4] Li Kun-Ying, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Liu Yi-Ming, Xu Bing-Jie, Wang Yun-Cai. Flat chaos generated by optical feedback multi-mode laser with filter. Acta Physica Sinica, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [5] Zhao Zan-Shan, Li Pei-Li. All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser. Acta Physica Sinica, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [6] Wang Yong-Sheng, Zhao Tong, Wang An-Bang, Zhang Ming-Jiang, Wang Yun-Cai. Conversion of external cavity mechanism of millimeter-level external cavity semiconductor laser by significantly increasing relaxation oscillation frequency. Acta Physica Sinica, 2017, 66(23): 234204. doi: 10.7498/aps.66.234204
    [7] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [8] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [9] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [10] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [11] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [12] Liu Liu, Zheng Jian-Yu, Zhang Ming-Jiang, Meng Li-Na, Zhang Zhao-Xia, Wang Yun-Cai. Photonic generation and transmission of chaotic ultra wideband signals. Acta Physica Sinica, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [13] Zheng An-Jie, Wu Zheng-Mao, Deng Tao, Li Xiao-Jian, Xia Guang-Qiong. Nonlinear dynamics of 1550 nm vertical-cavity surface-emitting laser with polarization- preserved optical feedback. Acta Physica Sinica, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [14] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [15] Meng Li-Na, Zhang Ming-Jiang, Zheng Jian-Yu, Zhang Zhao-Xia, Wang Yun-Cai. Chaotic ultra-wideband microwave signal generation utilizing an optical injection chaotic laser diode. Acta Physica Sinica, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [16] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [17] Zhang Xiu-Juan, Wang Bing-Jie, Yang Ling-Zhen, Wang An-Bang, Guo Dong-Ming, Wang Yun-Cai. Flat broadband chaotic carrier generation and synchronization. Acta Physica Sinica, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [18] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [19] Liu Sheng-Fang, Xia Guang-Qiong, Wu Jia-Gui, Li Lin-Fu, Wu Zheng-Mao. Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection. Acta Physica Sinica, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [20] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
Metrics
  • Abstract views:  7073
  • PDF Downloads:  772
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2012
  • Accepted Date:  09 October 2012
  • Published Online:  05 March 2013

/

返回文章
返回
Baidu
map