-
利用直接电流调制光反馈半导体激光器产生了符合美国联邦通信委员会关于室内无线通信频谱限定的超宽带(UWB)微波信号.基于光反馈半导体激光器速率方程组, 数值分析了偏置电流、反馈强度对混沌UWB脉冲信号的影响.研究表明, 混沌UWB脉冲频谱的-10 dB带宽分别随着偏置电流的增大和反馈强度的增强而逐渐增加; 中心频率分别随着偏置电流的增大和反馈强度的增强而逐渐增大.实验中, 产生了中心频率为6.6 GHz, -10 dB带宽为9.6 GHz的混沌UWB信号. 进一步, 通过调节偏置电流和反馈强度, 可实现混沌UWB信号的中心频率和-10 dB带宽的可调谐输出, 实验结果和数值分析相符合.此外, 实验产生的混沌UWB信号经过34.08 km的光纤传输后, 其频谱形状几乎没有发生变化, 表明该方法所产生的混沌UWB信号对光纤色散有较大的容忍度.The chaotic ultra-wideband (UWB) pulse signals are generated by directly modulating semiconductor laser subjected to optical feedback. We simulate that the -10 dB bandwidth and the central frequency of the RF spectrum of the chaotic UWB signals are influenced by the bias current and feedback strength. The research results demonstrate that the -10 dB bandwidth of the RF spectrum of the UWB signals increases with the increases of the bias current of the semiconductor laser and the feedback, the central frequency also increases with the increases of the bias current and the feedback. In our experiments, chaotic UWB signals with steerable and flatted power spectrum are generated by directly modulating DFB-LD subjected to optical feedback. The power spectrum of UWB signals is fully compliant with the FCC indoor mask, while a large fractional bandwidth of 133% and a central frequency of 6.6 GHz are achieved. The central frequency and -10 dB bandwidth of the chaotic UWB signals are on a large scale tunable by adjusting the bias current and feedback power. In addition, the chaotic UWB signals transmit through a 34.08 km single mode fiber and the power spectrum does not have any discrete spectrum line.
-
Keywords:
- ultra-wideband /
- chaotic laser /
- optical feedback /
- direct modulation
[1] Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295
[2] Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36
[3] Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102
[4] Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219
[5] Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36
[6] Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062
[7] Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447
[8] Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651
[9] Pan S L, Yao J P 2009 Opt. Lett. 34 1312
[10] Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235
[11] Juan Y S, Lin F Y 2010 Opt. Express 18 9664
[12] Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870
[13] Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643
[14] Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063
[15] Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754
[16] Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803
[17] Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1
[18] Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657
[19] Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217
[20] Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117
[21] Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692
[22] Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734
[23] Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 60 124212]
[24] Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008
[25] Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 61 084204]
[26] Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488
[27] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[28] Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[29] Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]
[30] Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697
[31] Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369
[32] Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160
[33] Win M Z 2002 IEEE Commun. Lett. 6 526
[34] Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510
-
[1] Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295
[2] Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36
[3] Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102
[4] Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219
[5] Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36
[6] Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062
[7] Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447
[8] Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651
[9] Pan S L, Yao J P 2009 Opt. Lett. 34 1312
[10] Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235
[11] Juan Y S, Lin F Y 2010 Opt. Express 18 9664
[12] Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870
[13] Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643
[14] Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063
[15] Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754
[16] Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803
[17] Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1
[18] Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657
[19] Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217
[20] Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117
[21] Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692
[22] Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734
[23] Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 60 124212]
[24] Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008
[25] Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 61 084204]
[26] Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488
[27] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[28] Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[29] Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]
[30] Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697
[31] Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369
[32] Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160
[33] Win M Z 2002 IEEE Commun. Lett. 6 526
[34] Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510
计量
- 文章访问数: 7069
- PDF下载量: 772
- 被引次数: 0