搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型矩形点阵光子晶体光纤的高双折射负色散效应

张亚妮

引用本文:
Citation:

新型矩形点阵光子晶体光纤的高双折射负色散效应

张亚妮

High-birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber

Zhang Ya-Ni
PDF
导出引用
  • 设计了一种新型矩形点阵光子晶体光纤,该光纤纤芯缺失一根空气柱,包层沿光纤长度方向在普通矩形点阵光子晶体光纤中每两列之间隔一行插入一列空气孔而形成正方形网孔结构. 采用全矢量有限元法并结合各向异性完美匹配边界条件,对该光纤的色散、双折射和约束损耗进行了数值模拟. 结果发现,该光纤具有高双折射负色散效应和较强的模约束能力,约束损耗小于10-2 dB ·m-1,通过改变光纤结构参数(即空气孔间隔Λ和相对孔间隔d/Λ),可以调节该光纤高双折射负色散工作波长. 若调整光纤结构参数Λ=2.0 μm,d/Λ=0.4,该光纤在C波段(1.53—1.565 μm)呈现负色散并具有负色散斜率,双折射高达10-2,非线性系数接近55 km-1W-1. 该光纤将在保偏光通信、色散补偿以及基于四波混频的波长转换器设计等方面具有重要的应用.
    A novel rectangular lattice photonic crystal fiber is proposed which is composed of a central defect core and a cladding with square mesh structure by introducing another air hole row between two air hole rows for every other line into a conventional rectangular lattice photonic crystal fiber. Its dispersion, birefringence and confinement loss are numerically investigated by full vector finite element method with anisotropic perfectly matched layers. Numerical results indicate that the proposed fiber shows higher birefringence negative dispersion effect and stronger confinement ability of guided mode, in which the confinement loss is lower than 10-2 dB ·m-1. The wavelength for high birefringence negative dispersion can be optimized by adjusting the parameters of proposed fiber, such as Λ and d/Λ. The dispersion and the dispersion slope are both negative, the birefringence is higher than 10-2, and nonlinear parameter is close to 55 km-1W-1 over C band (i.e. 1.53—1.565 μm) under the condition of Λ=2.0 μm and d/Λ=0.4. This fiber will have important applications in the fields of polarization maintaining transmission system and dispersion compensation, and also in the design of widely tunable wavelength converter based on four-wave mixing.
    • 基金项目: 中国博士后科学基金(批准号:20080431258)、瞬态光学与光子技术国家重点实验室研究基金(批准号:SKLST200913)和宝鸡文理学院科研计划重点项目(批准号:ZK0841)资助的课题.
    [1]

    Saitoh K, Koshiba M 2003 Opt. Express 11 843

    [2]

    Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛、侯蓝田、刘兆伦、王 伟、魏红彦、马景瑞 2007 56 2275]

    [3]

    Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王 健、雷乃光、余重秀 2007 56 946]

    [4]

    Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪、刘小毅、张 民、叶培大 2006 55 6447]

    [5]

    Ren L Y, Wang H Y, Zhang Y N, Yao B L, Zhao W 2007 Chin. Phys. Lett. 24 1298

    [6]

    Zhang Y 2008 J. Mod. Opt. 55 3563

    [7]

    Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M 2001 Opt. Express 9 676

    [8]

    Zhang C S, Kai G Y, Wang Z, Wang C, Sun T T, Zhang W G, Liu Y G, Liu J F, Yuan S Z, Dong X Y 2005 Acta Phys. Sin. 54 2758 (in Chinese) [张春书、开桂云、王 志、王 超、孙婷婷、张伟刚、刘艳格、刘剑飞、袁树忠、董孝义 2005 54 2758] 〖9] Zhang Y N, Miao R C, Ren L Y, Wang H Y, Wang L, Zhao W 2007 Chin. Phys. 16 17198

    [9]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735 (in Chinese) [延凤平、李一凡、王 琳、龚桃荣、刘 鹏、刘 洋、陶沛琳、曲美霞、简水生 2008 57 5735]

    [10]

    Zhang Y N 2008 Acta Phys. Sin. 57 5729 (in Chinese) [张亚妮 2008 57 5729]

    [11]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A 6 997

    [12]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [13]

    Wang L, Yang D 2007 Opt. Express 15 8892

    [14]

    Bouk A H, Cucinotta A, Poli F, Selleri S 2004 Opt. Express 12 941

    [15]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [16]

    Koshiba M, Tsuji Y 2000 J. Lightwave Technol. 18 737

    [17]

    Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63

    [18]

    Liu X M 2008 Phys. Rev. A 77 043818

    [19]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华、宋啸中、王屹山、刘红军、赵 卫、刘雪明、彭钦军、许祖彦 2008 57 917]

    [20]

    Liu X M, Zhou X, Tang X, Ng J, Hao J, Chai T, Leong E 2005 IEEE Photon. Technol. Lett. 17 1626

    [21]

    Liu X M, Yang X F, Lu F Y, Ng J, Zhou X Q, Lu C 2005 Opt. Express 13 142

    [22]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、侯蓝田 2010 59 1095]

    [23]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [24]

    Chow K K, Shu C, Lin C L 2005 IEEE Photon. Technol. Lett. 17 624

    [25]

    Liu X M 2006 Opt. Commun. 260 554

    [26]

    Zhang A L, Demokan M S 2005 Opt. Lett. 30 2375

    [27]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Lett. 29 1336

  • [1]

    Saitoh K, Koshiba M 2003 Opt. Express 11 843

    [2]

    Zhao X T, Hou L T, Liu Z L, Wang W, Wei H Y, Ma J R 2007 Acta Phys. Sin. 56 2275 (in Chinese) [赵兴涛、侯蓝田、刘兆伦、王 伟、魏红彦、马景瑞 2007 56 2275]

    [3]

    Wang J, Lei N G, Yu C X 2007 Acta Phys. Sin. 56 946 (in Chinese) [王 健、雷乃光、余重秀 2007 56 946]

    [4]

    Zhang F D, Liu X Y, Zhang M, Ye P D 2006 Acta Phys. Sin. 55 6447 (in Chinese) [张方迪、刘小毅、张 民、叶培大 2006 55 6447]

    [5]

    Ren L Y, Wang H Y, Zhang Y N, Yao B L, Zhao W 2007 Chin. Phys. Lett. 24 1298

    [6]

    Zhang Y 2008 J. Mod. Opt. 55 3563

    [7]

    Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M 2001 Opt. Express 9 676

    [8]

    Zhang C S, Kai G Y, Wang Z, Wang C, Sun T T, Zhang W G, Liu Y G, Liu J F, Yuan S Z, Dong X Y 2005 Acta Phys. Sin. 54 2758 (in Chinese) [张春书、开桂云、王 志、王 超、孙婷婷、张伟刚、刘艳格、刘剑飞、袁树忠、董孝义 2005 54 2758] 〖9] Zhang Y N, Miao R C, Ren L Y, Wang H Y, Wang L, Zhao W 2007 Chin. Phys. 16 17198

    [9]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735 (in Chinese) [延凤平、李一凡、王 琳、龚桃荣、刘 鹏、刘 洋、陶沛琳、曲美霞、简水生 2008 57 5735]

    [10]

    Zhang Y N 2008 Acta Phys. Sin. 57 5729 (in Chinese) [张亚妮 2008 57 5729]

    [11]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A 6 997

    [12]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [13]

    Wang L, Yang D 2007 Opt. Express 15 8892

    [14]

    Bouk A H, Cucinotta A, Poli F, Selleri S 2004 Opt. Express 12 941

    [15]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [16]

    Koshiba M, Tsuji Y 2000 J. Lightwave Technol. 18 737

    [17]

    Yang X, Zhao C L, Peng Q, Zhou X, Lu C 2005 Opt. Commun. 250 63

    [18]

    Liu X M 2008 Phys. Rev. A 77 043818

    [19]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华、宋啸中、王屹山、刘红军、赵 卫、刘雪明、彭钦军、许祖彦 2008 57 917]

    [20]

    Liu X M, Zhou X, Tang X, Ng J, Hao J, Chai T, Leong E 2005 IEEE Photon. Technol. Lett. 17 1626

    [21]

    Liu X M, Yang X F, Lu F Y, Ng J, Zhou X Q, Lu C 2005 Opt. Express 13 142

    [22]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红、侯蓝田 2010 59 1095]

    [23]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [24]

    Chow K K, Shu C, Lin C L 2005 IEEE Photon. Technol. Lett. 17 624

    [25]

    Liu X M 2006 Opt. Commun. 260 554

    [26]

    Zhang A L, Demokan M S 2005 Opt. Lett. 30 2375

    [27]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Lett. 29 1336

  • [1] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [2] 王云, 蓝天, 倪国强. 室内可见光通信复合光学接收端设计与分析.  , 2017, 66(8): 084207. doi: 10.7498/aps.66.084207
    [3] 冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华. 混沌与湍流大气中的光通信.  , 2016, 65(8): 084207. doi: 10.7498/aps.65.084207
    [4] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计.  , 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [5] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤.  , 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [6] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法.  , 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [7] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [8] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析.  , 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析.  , 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [10] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应.  , 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [11] 张亚妮. 低损耗低非线性高负色散光子晶体光纤的优化设计.  , 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [12] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤.  , 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [13] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究.  , 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [14] 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义. 高双折射纳米结构光子晶体光纤特性研究.  , 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [15] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应.  , 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [16] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用.  , 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [17] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗.  , 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [18] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.  , 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [19] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟.  , 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究.  , 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
计量
  • 文章访问数:  8648
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-25
  • 修回日期:  2010-07-29
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map