-
Electronic and atomic structures of LiP5, Li3P7 and LiP, which are formed in the process of lithium intercalation into black phosphorus, are systematically studied and analyzed using first-principles ultrasoft pseudopotential method based on the density functional theory (DFT). By caculating the electronic strucrures of these products, we find that the three products are all of semiconductor band structure, of which band gaps are larger than those of black phosphorus, indicating that the electronic conductivity of the black phosphorus is reduced after lithium has been intercalated into it. We simulate the diffusion of lithium ions in the LiP5, Li3P7 and LiP materials using nudged elastic band (NEB) method, and the diffusion activation energy of lithium ions is obtained firstly through the theoretical calculation. Compare with the results of other electrode materials, our results show that the migration energy barriers of lithium ions in LiP5, Li3P7 and LiP are all low. The diffusion coefficient of lithium ions in LiP5 is about 10-4 m2/s and the diffusion channel is one-dimensional. The diffusion coefficient of lithium ions in Li3P7 is approximately 10-7-10-6 cm2/s and the diffusion channel is three-dimensional. The diffusion coefficient of lithium ions in LiP is approximately 10-8-10-5 cm2/s and the diffusion channel is three-dimensional.
-
Keywords:
- lithium ion batteries /
- black phosphorus /
- elastic band method /
- diffusion energy barriers
[1] Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]
[2] Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248
[3] Park C M, Sohn H J 2007 Adv. Mater. 19 2465
[4] Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707
[5] Park C M 2008 US Patent 11 835 710 [2008-02-14]
[6] Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718
[7] Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756
[8] Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492
[9] Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 60 077103]
[10] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61
[11] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[12] Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104
[13] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304
[15] Blochl P E 1994 Phys. Rev. B 50 17953
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[18] Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22
[21] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106
[22] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[23] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176
[24] Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[25] Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303
[26] Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30
[27] Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302
[28] Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569
-
[1] Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]
[2] Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248
[3] Park C M, Sohn H J 2007 Adv. Mater. 19 2465
[4] Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707
[5] Park C M 2008 US Patent 11 835 710 [2008-02-14]
[6] Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718
[7] Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756
[8] Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492
[9] Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 60 077103]
[10] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61
[11] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[12] Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104
[13] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304
[15] Blochl P E 1994 Phys. Rev. B 50 17953
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[18] Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22
[21] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106
[22] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[23] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176
[24] Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[25] Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303
[26] Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30
[27] Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302
[28] Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569
Catalog
Metrics
- Abstract views: 12983
- PDF Downloads: 1957
- Cited By: 0