搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学模型的锂离子电池多尺度建模及其简化方法

庞辉

引用本文:
Citation:

基于电化学模型的锂离子电池多尺度建模及其简化方法

庞辉

Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model

Pang Hui
PDF
导出引用
  • 锂离子电池的精确建模和状态估计对于电动汽车电池管理系统非常重要,准二维(P2D)电化学模型由于计算复杂,难以直接应用于电池管理的参数在线估计和实时控制中.本文基于多孔电极理论和浓度理论,提出一种考虑锂离子液相动力学的简化准二维(SP2D)模型.忽略锂离子孔壁流量沿电极厚度方向的变化求解SP2D模型所描述的锂离子电池锂浓度分布,基于锂离子电池电化学平均动力学行为求解固相和液相电势变化,推导出电池电压计算的简化表达式;采用恒流、脉冲以及城市循环工况放电电流对比分析了严格P2D模型与SP2D模型的终端电压和浓度分布.结果表明:SP2D模型在保持较高计算精度的同时,可显著提高计算效率.
    It is very important to accurately model Li-ion battery and estimate the corresponding parameters that can be used for battery management system (BMS) of electric vehicles (EVs). However, the rigorous pseudo-two-dimensional (P2D) model of Li-ion battery is too complicated to be adopted directly to online state estimation and real-time control of stage-of-charge in BMS applications. To solve this problem, in this study we present a simplified pseudo-two-dimensional (SP2D) model by the electrolyte dynamic behaviors of electrochemical battery model, which is based on the porous electrode theory and concentration theory. First, the classical concentration equations of Li-ion battery P2D model are investigated and introduced, based on which, the approximated method of describing the concentration distributions of Li-ion battery described by the SP2D model is given by ignoring the variation of Li-ion wall flux density across the electrode thickness; then, the Li-ion battery terminal output voltage, the solid phase concentration and potential diffusion, the electrolyte concentration and potential distribution can be calculated based on the averaged electrochemical dynamic behaviors of Li-ion battery. Moreover, by employing some concentration assumptions:1) the solid-phase lithium concentration in each electrode is constant in spatial coordinate x, and uniform in time; 2) the exchange current density can be approximated by its averaged value; 3) the total amount of lithium in the electrolyte and in the solid phase is conserved; with the averaged dynamics of SP2D model, the simplified calculation expression for Li-ion battery terminal voltage is derived. Finally, a case study of Sony NMC 18650 Li-ion battery is conducted, and the simulated comparisons among the battery voltages at different-C-rate galvanostatic discharges, and the related electrolyte concentration of Li-ion at 1 C-rate are conducted. Moreover, the proposed SP2D model is used to predict the battery voltage and electrolyte concentration distribution with respect to the P2D model under hybrid pulse power characterization condition and urban dynamometer driving schedule condition, and the corresponding test data are used to verify the accuracy of the SP2D model. It is observed that the simulated data of SP2D model are in good accord with those of the P2D model and test curve under these two operation conditions, which further validates the effectiveness of the proposed electrochemical model of Li-ion battery. Accordingly, the proposed SP2D model in this paper can be used to estimate real-time state information in advanced battery management system applications, and can improve the calculation efficiency significantly and still hold higher accuracy simultaneously than that from the P2D model.
      通信作者: 庞辉, huipang@163.com
    • 基金项目: 国家自然科学基金(批准号:51675423)资助的课题.
      Corresponding author: Pang Hui, huipang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675423).
    [1]

    Wang M, Li J J, Wu H, Wan C R, He X M (in Chinese)[王铭, 李建军, 吴扞, 万春荣, 何向明 2011 电源技术 7 862]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese)[程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [3]

    Wang J P, Guo J G, Ding L 2009 Energy Convers. Manag. 50 318

    [4]

    Fleischer C, Waag W, Bai Z, Sauer D U 2013 J. Power Sources 243 728

    [5]

    Domenico D D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Sys. Meas. Control 132 768

    [6]

    Prada E, Domenico D D, Creff Y, Bernard J, SauvantMoynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508

    [7]

    Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2013 J. Electrochem. Soc. 160 A616

    [8]

    Chaturvedi N A, Klein R, Christensen J, Ahmed J, Kojic A 2010 Control Syst. IEEE 30 49

    [9]

    Guo M, Sikha G, White R E 2011 J. Electrochem. Soc. 158 A122

    [10]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese)[黄亮, 李建远 2015 64 108202]

    [11]

    Kemper P, Li S E, Kum D 2015 J. Power Sources 286 510

    [12]

    Han X, Ouyang M, Lu L, Li J 2015 J. Power Sources 278 814

    [13]

    Guo M, Jin X F, White R E 2017 J. Electrochem. Soc. 164 E3001

    [14]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [15]

    Luo W L, Lu C, Wang L X, Zhang L Q 2013 J. Power Sources 241 295

    [16]

    Joel C F, Saeid B, Jeffrey L S, Hosam K F 2011 J. Electrochem. Soc. 158 A93

    [17]

    Venkat R S, Vijayasekaran B, Venkatasailanathan R, Mounika A 2009 J. Electrochem. Soc. 156 A260

    [18]

    Cai L, White R E 2009 J. Electrochem. Soc. 156 A154

    [19]

    Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002

    [20]

    Subramanian V R, Boovaragavan V, Diwakar V D 2007 Electrochem. Solid-State Lett. 10 A255

    [21]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620

    [22]

    Smith K A, Rahn C D, Wang C Y 2007 Energy Convers. Manag. 48 2565

    [23]

    Di Domenico D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst. Meas. Control 132 061302

    [24]

    Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508

    [25]

    Rahimian S K, Rayman S, White R E 2013 J. Power Sources 224 180

    [26]

    Moura S J, Chaturvedi N A, Krstic M E 2013 J. Dyn. Sys. Meas. Control 136 011015

    [27]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. T. 2 453

    [28]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis:Washington University)

    [29]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [30]

    Ma J H, Wang Z S, Su X R 2013 J. Power Supply 1 30 (in Chinese)[马进红, 王正仕, 苏秀蓉 2013 电源学报 1 30]

  • [1]

    Wang M, Li J J, Wu H, Wan C R, He X M (in Chinese)[王铭, 李建军, 吴扞, 万春荣, 何向明 2011 电源技术 7 862]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese)[程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [3]

    Wang J P, Guo J G, Ding L 2009 Energy Convers. Manag. 50 318

    [4]

    Fleischer C, Waag W, Bai Z, Sauer D U 2013 J. Power Sources 243 728

    [5]

    Domenico D D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Sys. Meas. Control 132 768

    [6]

    Prada E, Domenico D D, Creff Y, Bernard J, SauvantMoynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508

    [7]

    Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2013 J. Electrochem. Soc. 160 A616

    [8]

    Chaturvedi N A, Klein R, Christensen J, Ahmed J, Kojic A 2010 Control Syst. IEEE 30 49

    [9]

    Guo M, Sikha G, White R E 2011 J. Electrochem. Soc. 158 A122

    [10]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese)[黄亮, 李建远 2015 64 108202]

    [11]

    Kemper P, Li S E, Kum D 2015 J. Power Sources 286 510

    [12]

    Han X, Ouyang M, Lu L, Li J 2015 J. Power Sources 278 814

    [13]

    Guo M, Jin X F, White R E 2017 J. Electrochem. Soc. 164 E3001

    [14]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [15]

    Luo W L, Lu C, Wang L X, Zhang L Q 2013 J. Power Sources 241 295

    [16]

    Joel C F, Saeid B, Jeffrey L S, Hosam K F 2011 J. Electrochem. Soc. 158 A93

    [17]

    Venkat R S, Vijayasekaran B, Venkatasailanathan R, Mounika A 2009 J. Electrochem. Soc. 156 A260

    [18]

    Cai L, White R E 2009 J. Electrochem. Soc. 156 A154

    [19]

    Subramanian V R, Diwakar V D, Tapriyal D 2005 J. Electrochem. Soc. 152 A2002

    [20]

    Subramanian V R, Boovaragavan V, Diwakar V D 2007 Electrochem. Solid-State Lett. 10 A255

    [21]

    Santhanagopalan S, Guo Q Z, Ramadass P, White R E 2006 J. Power Sources 156 620

    [22]

    Smith K A, Rahn C D, Wang C Y 2007 Energy Convers. Manag. 48 2565

    [23]

    Di Domenico D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst. Meas. Control 132 061302

    [24]

    Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F 2012 J. Electrochem. Soc. 159 A1508

    [25]

    Rahimian S K, Rayman S, White R E 2013 J. Power Sources 224 180

    [26]

    Moura S J, Chaturvedi N A, Krstic M E 2013 J. Dyn. Sys. Meas. Control 136 011015

    [27]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. T. 2 453

    [28]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis:Washington University)

    [29]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [30]

    Ma J H, Wang Z S, Su X R 2013 J. Power Supply 1 30 (in Chinese)[马进红, 王正仕, 苏秀蓉 2013 电源学报 1 30]

  • [1] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性.  , 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [3] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于ADME模型的锂离子动力电池外特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211401
    [4] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , 2021, (): . doi: 10.7498/aps.70.20211619
    [5] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [6] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比.  , 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [7] 邢丽丹, 谢启明, 李伟善. 电解液及其界面电化学性质的机理研究进展.  , 2020, 69(22): 228205. doi: 10.7498/aps.69.20201553
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制.  , 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略.  , 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [10] 程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮. 锂离子电池多尺度数值模型的应用现状及发展前景.  , 2015, 64(21): 210202. doi: 10.7498/aps.64.210202
    [11] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测.  , 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [12] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究.  , 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [13] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究.  , 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布.  , 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [16] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2.  , 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究.  , 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究.  , 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  14429
  • PDF下载量:  1323
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map