搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响

宋旭 陆勇俊 石明亮 赵翔 王峰会

引用本文:
Citation:

集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响

宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会

Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium-ion battery electrode

Song Xu, Lu Yong-Jun, Shi Ming-Liang, Zhao Xiang, Wang Feng-Hui
PDF
导出引用
  • 针对锂离子电池双层电极结构,建立了综合考虑锂扩散、应力、浓度影响的材料属性及集流体弹塑性变形的理论模型.基于所建立的模型,主要研究了在充电过程中集流体可能发生的塑性变形对电极中锂扩散及应力的影响.数值结果表明集流体的塑性变形会减弱其对活性层的约束,这不仅使得集流体和活性层中的应力得到明显缓解,而且还促进了锂在活性层中的扩散,提高了活性层的有效容量.与此同时,研究了集流体的屈服强度和塑性模量这两个参数的影响,结果表明,较小的屈服强度和较小的塑性模量能进一步弱化约束,松弛电极活性层中的应力,并增加其有效充电容量.研究结果为分层电极的结构设计和性能优化提供了一定的参考.
    Lithium-ion batteries (LIBs) have already become indispensable energy storage devices, as they can meet urgent requirements for higher energy and power density in the applications ranging from portable electronics to electric vehicles. However, in the process of charging and discharging of LIB, the diffusion-induced stress associated with inhomogeneous Li concentration in the electrode may cause the electrode material to damage, and then further degrade storage capacity and cycling performance of LIB. Therefore, it is important to quantitatively understand the mechanism relating to the stress evolution in electrode during electrochemical cycling, which will be conducive to developing effective methods of relieving the diffusion induced stress. In this work, a bilayer electrode model is proposed by taking into account Li diffusion, built-in stress, concentration-dependent material properties and elastoplastic deformation of current collector. Based on the established model, the influences of the possible plastic deformation in the current collector on the lithium diffusion and stress evolution of bilayer electrode during charging are investigated. The numerical results show that the plastic deformation of current collector can weaken the constraint between current collector and active layer, which leads to a smaller electrode curvature and more homogeneous lithium concentration in the active layer. The relaxation effect of the plastic deformation not only significantly relieves the stresses at the bottom and top surface of active layer, but also promotes the diffusion of lithium into active layer, which can improve the structural reliability of the electrode and increase the effective capacity of the active layer. Furthermore, the influences of the yield strength and plastic modulus of the current collector are discussed. The results indicate that the constraint between the current collector and active layer becomes weaker with reducing yield strength and plastic modulus of current collector, respectively. In other words, the further stress relaxation in the electrode indicates that the capacity can be enhanced upon reducing the yield strength and plastic modulus of current collector, respectively. Considering our results, it is expected that a bilayer electrode composed of the current collector with smaller mechanical strength enjoys simultaneous improvement in battery usable capacity and structural reliability. Consequently, the results of this paper provide a route to improving the cycle performance of bilayer lithium-ion battery electrode.
      通信作者: 王峰会, fhwang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11372251,11572253)资助的课题.
      Corresponding author: Wang Feng-Hui, fhwang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372251, 11572253).
    [1]

    Yang H, Qu J M 2016 Sci. Technol. Rev. 34 88 (in Chinese) [杨辉, 曲建民 2016 科技导报 34 88]

    [2]

    Tarascon J M, Armand M 2001 Nature 414 359

    [3]

    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard K C, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [4]

    Zhang J Q, L B, Song Y C 2017 Chin. Quart. Mech. 38 14 (in Chinese) [张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14]

    [5]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [6]

    Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 65 100201]

    [7]

    Ma Z S, Zhou Y C, Liu J, Xue D F, Yang Q S, Pan Y 2013 Adv. Mech. 43 540 (in Chinese) [马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇 2013 力学进展 43 540]

    [8]

    Choi N S, Yao Y, Cui Y, Cho J 2011 J. Mater. Chem. 21 9825

    [9]

    Graetz J, Ahn C C, Yazami R, Fultz B 2004 J. Electrochem. Soc. 151 A698

    [10]

    Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949

    [11]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374

    [12]

    Wu H, Cui Y 2012 Nano Today 7 414

    [13]

    Zhang J Q, Lu B, Song Y C, Ji X 2012 J. Power Sources 209 220

    [14]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307

    [15]

    He K C, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J 2014 J. Power Sources 248 517

    [16]

    Hao F, Fang D N 2013 J. Power Sources 242 415

    [17]

    Zhang X, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351

    [18]

    Liu D, Chen W, Shen X 2016 Eur. J. Mech. A: Solid. 55 167

    [19]

    Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91

    [20]

    Lu Y J, Che Q, Song X, Wang F H, Zhao X 2018 Scripta Mater. 150 164

    [21]

    Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22

    [22]

    Li D, Li Z, Song Y, Zhang J 2016 Appl. Math. Mech. Engl. Ed. 37 659

    [23]

    Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168

    [24]

    Yang F, Li J C M 2003 J. Appl. Phys. 93 9304

    [25]

    Hsueh C H, Evans A G 1985 J. Am. Ceram. Soc. 68 241

    [26]

    Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102 (in Chinese) [陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 65 098102]

    [27]

    Yang F Q 2012 Sci. China 55 955

    [28]

    Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218

    [29]

    Larché F, Cahn J W 1978 Acta Metall. 21 53

    [30]

    Larché F, Cahn J W 1985 Acta Metall. 33 331

    [31]

    Zhang X, Wei S, Sastry A M 2007 J. Electrochem. Soc. 154 A910

    [32]

    Shi D, Xiao X, Huang X, Kia H 2011 J. Power Sources 196 8129

    [33]

    Xuan F Z, Shao S S, Wang Z, Tu S T 2009 J. Phys. D: Appl. Phys. 42 15401

    [34]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 s226

    [35]

    Liu P, Sridhar N, Zhang Y W 2012 J. Appl. Phys. 112 A93

  • [1]

    Yang H, Qu J M 2016 Sci. Technol. Rev. 34 88 (in Chinese) [杨辉, 曲建民 2016 科技导报 34 88]

    [2]

    Tarascon J M, Armand M 2001 Nature 414 359

    [3]

    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard K C, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [4]

    Zhang J Q, L B, Song Y C 2017 Chin. Quart. Mech. 38 14 (in Chinese) [张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14]

    [5]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [6]

    Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 65 100201]

    [7]

    Ma Z S, Zhou Y C, Liu J, Xue D F, Yang Q S, Pan Y 2013 Adv. Mech. 43 540 (in Chinese) [马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇 2013 力学进展 43 540]

    [8]

    Choi N S, Yao Y, Cui Y, Cho J 2011 J. Mater. Chem. 21 9825

    [9]

    Graetz J, Ahn C C, Yazami R, Fultz B 2004 J. Electrochem. Soc. 151 A698

    [10]

    Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949

    [11]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374

    [12]

    Wu H, Cui Y 2012 Nano Today 7 414

    [13]

    Zhang J Q, Lu B, Song Y C, Ji X 2012 J. Power Sources 209 220

    [14]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307

    [15]

    He K C, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J 2014 J. Power Sources 248 517

    [16]

    Hao F, Fang D N 2013 J. Power Sources 242 415

    [17]

    Zhang X, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351

    [18]

    Liu D, Chen W, Shen X 2016 Eur. J. Mech. A: Solid. 55 167

    [19]

    Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91

    [20]

    Lu Y J, Che Q, Song X, Wang F H, Zhao X 2018 Scripta Mater. 150 164

    [21]

    Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22

    [22]

    Li D, Li Z, Song Y, Zhang J 2016 Appl. Math. Mech. Engl. Ed. 37 659

    [23]

    Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168

    [24]

    Yang F, Li J C M 2003 J. Appl. Phys. 93 9304

    [25]

    Hsueh C H, Evans A G 1985 J. Am. Ceram. Soc. 68 241

    [26]

    Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102 (in Chinese) [陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 65 098102]

    [27]

    Yang F Q 2012 Sci. China 55 955

    [28]

    Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218

    [29]

    Larché F, Cahn J W 1978 Acta Metall. 21 53

    [30]

    Larché F, Cahn J W 1985 Acta Metall. 33 331

    [31]

    Zhang X, Wei S, Sastry A M 2007 J. Electrochem. Soc. 154 A910

    [32]

    Shi D, Xiao X, Huang X, Kia H 2011 J. Power Sources 196 8129

    [33]

    Xuan F Z, Shao S S, Wang Z, Tu S T 2009 J. Phys. D: Appl. Phys. 42 15401

    [34]

    Zhao K, Pharr M, Cai S, Vlassak J J, Suo Z 2011 J. Am. Ceram. Soc. 94 s226

    [35]

    Liu P, Sridhar N, Zhang Y W 2012 J. Appl. Phys. 112 A93

  • [1] 彭颖吒, 张锴, 郑百林. 恒流充电有限柱体电极浓度分布及扩散诱导应力解析分析.  , 2024, 73(15): 158201. doi: 10.7498/aps.73.20231753
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比.  , 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , 2021, (): . doi: 10.7498/aps.70.20211619
    [5] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [6] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响.  , 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [7] 彭颖吒, 李泳, 郑百林, 张锴, 徐咏川. 考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析.  , 2018, 67(7): 070203. doi: 10.7498/aps.67.20172288
    [8] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法.  , 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析.  , 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性.  , 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [11] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究.  , 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [13] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] 李涛, 周春兰, 刘振刚, 赵雷, 李海玲, 刁宏伟, 王文静. 晶体硅太阳电池双层电极优化分析与实验研究.  , 2012, 61(3): 038802. doi: 10.7498/aps.61.038802
    [15] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2.  , 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究.  , 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [17] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [18] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究.  , 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [19] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚.  , 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [20] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
计量
  • 文章访问数:  7965
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-20
  • 修回日期:  2018-04-10
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map