Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery

Li Juan Ru Qiang Hu She-Jun Guo Ling-Yun

Citation:

Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery

Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The SnSb/C composite material is prepared by using the carbonthermal reduction to deal with the mixture of SnO2 and SbO3, respectively with different carbon reductant-glucose and mesocarbon microbead (MCMB). The morphologies and electrochemical properties of two kinds of structures of SnSb/C composite are compared. To characterize the phase and morphology of the composite material, X-ray diffraction, Raman spectra and scanning electron microscope are used. The current charge and discharge, cyclic voltammograms and AC impedancetests are also used to test the electrochemical performance of SnSb/C. The experimental results show that a kind of core-shell structure, of which the alloy particle serves as the core and the pyrolytic carbon as the outside shell, is formed when the glucose is used as the reducing agent. The first discharge specific capacity is 793.379 mA·h/g and it is still kept at 449.987 mA·h/g after 50 cycles. However, when the MCMB is used as the reducing agent, there are only a few of alloy particles attaching to the surface of MCMB, and it is not a kind of core-shell structure but a mixture of alloy particles and MCMB spheres. Its initial discharge specific capacity is 1164.938 mA·h/g, and after 50 cycles it is only 290.807 mA·h/g.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101062, 51171065), the Key Program of the Natural Science Foundation of Guangdong Province, China (Grant Nos. S2012020010937, 10351063101000001), the Science and Technology Program of Guangzhou, China (Grant No. 2011J4100075), the Cultivatable Foundation for Distinguished Young Talents of Institution of Higher Education of Guangdong Province, China (Grant No. LYM09052), and the Extracurricular Scientific Reseach Foundation for Students of South China Normal University, China (Grant No. 13WDGB02).
    [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Wang Y X, Chou S L, Kim J H, Liu H K, Dou S X 2013 Electrochim. Acta 93 213

    [3]

    Chen Z X, Xie K, Hong X B 2013 Electrochim. Acta 108 674

    [4]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [5]

    Gnanamuthu R M, Mohan S, Lee C W 2012 Mater. Lett. 84 101

    [6]

    Fang G Q, Kaneko S, Liu W W, Xia B B, Sun H D, Zhang R X, Zheng J W, Li D C 2013 Electrochim. Acta 111 627

    [7]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [8]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [9]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 J. Power Sources 183 339

    [10]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [11]

    Zheng Y X, Xie J, Liu S Y, Song W T, Cao G S, Zhu T J, Zhao X B 2012 J. Power Sources 202 276

    [12]

    Wang J L, Li Z H, Yang J, Tang J J, Yu J J, Nie W B, Lei G T, Xiao Q Z 2012 Electrochim. Acta 75 115

    [13]

    Lu X H, Zhao W X, Li G R, Hong H E, Tong Y X 2008 Mater. Lett. 62 4280

    [14]

    Wang F, Xu S H, Zhu S S, Peng H, Huang R, Wang L W, Xie X H, Chu P K 2013 Electrochim. Acta 87 250

    [15]

    Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 761

    [16]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [17]

    Ru Q, Hu S J, Zhang Z W, Peng W, Hou X H, Huang Z W 2010 Chin. Sci. Bull. 55 3113

    [18]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 59 8226]

    [19]

    Park C M, Sohn H J 2009 Electrochim. Acta 54 6367

    [20]

    Chang C C 2008 J. Power Sources 175 874

    [21]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [22]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [23]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [24]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [25]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [26]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [27]

    Fan S F, Sun T, Rui X H, Yan Q Y, Hng H H 2012 J. Power Sources 201 288

    [28]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [29]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater. Chem. 11 1502

    [30]

    Wang Z, Tian W H, Liu X H, Yang R, Li X G 2007 J. Solid State Chem. 180 3360

    [31]

    Liu S, Li Q, Chen Y X, Zhang F J 2009 J. Alloys Compd. 478 694

    [32]

    Lai J, Guo H J, Wang Z X, Li X H, Zhang X P, Wu F X, Yue P 2012 J. Alloys Compd. 530 30

    [33]

    Li J, Ru Q, Sun D W, Zhang B B, Hu S J, Hou X H 2013 Acta Phys. Sin. 62 098201 (in Chinese) [李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华 2013 62 098201]

    [34]

    McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y N 2007 Nano Lett. 7 2470

    [35]

    Guo J C, Chen X L, Wang C S 2010 J. Mater. Chem. 20 5035

    [36]

    Li J, Ru Q, Hu S J, Sun D W, Zhang B B, Hou X H 2013 Electrochim. Acta 113 505

    [37]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [38]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [39]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer C, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [40]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [41]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481

    [42]

    Suo L M, Hu Y S, Li H, Wang Z X, Chen L Q, Huang X J 2013 Chin. Sci. Bull. 58 3172 (in Chinese) [索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰 2013 科学通报 58 3172]

  • [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Wang Y X, Chou S L, Kim J H, Liu H K, Dou S X 2013 Electrochim. Acta 93 213

    [3]

    Chen Z X, Xie K, Hong X B 2013 Electrochim. Acta 108 674

    [4]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [5]

    Gnanamuthu R M, Mohan S, Lee C W 2012 Mater. Lett. 84 101

    [6]

    Fang G Q, Kaneko S, Liu W W, Xia B B, Sun H D, Zhang R X, Zheng J W, Li D C 2013 Electrochim. Acta 111 627

    [7]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [8]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [9]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 J. Power Sources 183 339

    [10]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [11]

    Zheng Y X, Xie J, Liu S Y, Song W T, Cao G S, Zhu T J, Zhao X B 2012 J. Power Sources 202 276

    [12]

    Wang J L, Li Z H, Yang J, Tang J J, Yu J J, Nie W B, Lei G T, Xiao Q Z 2012 Electrochim. Acta 75 115

    [13]

    Lu X H, Zhao W X, Li G R, Hong H E, Tong Y X 2008 Mater. Lett. 62 4280

    [14]

    Wang F, Xu S H, Zhu S S, Peng H, Huang R, Wang L W, Xie X H, Chu P K 2013 Electrochim. Acta 87 250

    [15]

    Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 761

    [16]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [17]

    Ru Q, Hu S J, Zhang Z W, Peng W, Hou X H, Huang Z W 2010 Chin. Sci. Bull. 55 3113

    [18]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 59 8226]

    [19]

    Park C M, Sohn H J 2009 Electrochim. Acta 54 6367

    [20]

    Chang C C 2008 J. Power Sources 175 874

    [21]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [22]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [23]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [24]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [25]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [26]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [27]

    Fan S F, Sun T, Rui X H, Yan Q Y, Hng H H 2012 J. Power Sources 201 288

    [28]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [29]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater. Chem. 11 1502

    [30]

    Wang Z, Tian W H, Liu X H, Yang R, Li X G 2007 J. Solid State Chem. 180 3360

    [31]

    Liu S, Li Q, Chen Y X, Zhang F J 2009 J. Alloys Compd. 478 694

    [32]

    Lai J, Guo H J, Wang Z X, Li X H, Zhang X P, Wu F X, Yue P 2012 J. Alloys Compd. 530 30

    [33]

    Li J, Ru Q, Sun D W, Zhang B B, Hu S J, Hou X H 2013 Acta Phys. Sin. 62 098201 (in Chinese) [李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华 2013 62 098201]

    [34]

    McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y N 2007 Nano Lett. 7 2470

    [35]

    Guo J C, Chen X L, Wang C S 2010 J. Mater. Chem. 20 5035

    [36]

    Li J, Ru Q, Hu S J, Sun D W, Zhang B B, Hou X H 2013 Electrochim. Acta 113 505

    [37]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [38]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [39]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer C, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [40]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [41]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481

    [42]

    Suo L M, Hu Y S, Li H, Wang Z X, Chen L Q, Huang X J 2013 Chin. Sci. Bull. 58 3172 (in Chinese) [索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰 2013 科学通报 58 3172]

  • [1] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [3] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [7] Pang Hui. An extended single particle model-based parameter identification scheme for lithium-ion cells. Acta Physica Sinica, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [8] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin, Li Yong. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Physica Sinica, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] Huang Liang, Li Jian-Yuan. Modeling and failure monitor of Li-ion battery based on single particle model and partial difference equations. Acta Physica Sinica, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [11] Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying. Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery. Acta Physica Sinica, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [12] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [15] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [17] Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun. Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres. Acta Physica Sinica, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [18] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] Hou Zhu-Feng, Liu Hui-Ying, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. Investigation of lithium insertion in anode material CuSn for lithium-ion batteries. Acta Physica Sinica, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
Metrics
  • Abstract views:  7707
  • PDF Downloads:  17349
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2013
  • Accepted Date:  22 April 2014
  • Published Online:  05 August 2014

/

返回文章
返回
Baidu
map