-
Aiming to inverstigate the effect of surface potential barrier on electron escape probability of negative electron affinity GaN photocathode, the electron escape probability is calculated by using the Boltzmann distribution and the method of transfer matrix based on Airy function. It is found that barrier I is a key influencing factor of electron escape probability, while barrier II has a limited influence. The activation photocurrent curve of the transmission-mode GaN photocathode is measured by using our built activation and evaluation experimental system of NEA GaN photocathode. The obvious increase of electron escape probability can be achieved mainly by activating Cs only. The increase of electron escape probability is not large in Cs/O activation process with only Cs activated sufficiently. The theoretical calculations are in good agreement with the photocurrent curves from experimental test. The reason is that the contribution of activating only Cs to the reducing of vacuum level for obtaining NEA state is much larger than that of activating Cs/O.
-
Keywords:
- GaN photocathode /
- electron escape probability /
- surface potential barrier /
- double dipole layer model
[1] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Guo X Y, Du X Q 2011 Acta Phys. Sin. 60 047901 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴 2011 60 047901]
[2] Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109
[3] [4] [5] Tripathi N, Bel L D, Nikzad S, Shahedipour S F 2010 Appl. Phys. Lett. 97 052107
[6] [7] Mizuno I, Nihashi T, Nagai T, Niigaki M, Shimizu Y, Shimano K, Katoh K, Ihara T, Okano K, Matsumoto M, Tachino M 2008 Proc. SPIE 6945 69451N1
[8] Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 567 89
[9] [10] Ulmer M P, Wessels W B, Shahedipour F, Korotkov R Y, Joseph C, Nihashi T 2001 Proc. SPIE 4288 246
[11] [12] Du X Q, Chang B K 2005 Appl. Surf. Sci. 251 267
[13] [14] Zou J J, Yang Z, Qiao J L 2008 J. Semicond. 29 1479
[15] [16] Qiao J L 2010 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [乔建良 2010 博士学位论文 (南京: 南京理工大学)]
[17] [18] Spicer W E, Herrera G A 1993 Proc. SPIE 2022 19
[19] [20] Fisher D G, Enstrom R E, Escher J S, Williams B F 1972 J. Appl. Phys. 43 3815
[21] [22] [23] Vergara G, Herrera G A, Spicer W E 1999 Surf. Sci. 436 83
[24] Escher J S, Schade H 1973 J. Appl. Phys. 44 5309
[25] [26] Bartelink D J, Moll J L, Meyer N L 1963 Phys. Rev. 130 972
[27] [28] Williams B F, Simon R E 1967 Phys. Rev. Lett. 18 485
[29] [30] [31] Qiao J L, Niu J, Yang Z, Zou J J, Chang B K 2009 Opt. Technol. 35 145 (in Chinese) [乔建良, 牛军, 杨智, 邹继军, 常本康 2009 光学技术 35 145]
[32] [33] Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford Univer-sity)
[34] [35] Lui W W, Fukuma M 1986 J. Appl. Phys. 60 1555
[36] Qiao J L, Tian S, Chang B K, Du X Q, Gao P 2009 Acta Phys. Sin. 58 5847 (in Chinese) [乔建良, 田思, 常本康, 杜晓晴, 高频 2009 58 5847]
[37] [38] [39] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Qiao J L, Du X Q 2011 Acta Phys. Sin. 60 057902 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴 2011 60 057902]
[40] [41] Qiao J L, Chang B K, Qian Y S, Du X Q, Zhang Y J, Gao P, Wang X H, Guo X Y, Niu J, Gao Y T 2010 Acta Phys. Sin. 59 3577 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂 2010 59 3577]
[42] Qiao J L, Chang B K, Du X Q, Niu J, Zou J J 2010 Acta Phys. Sin. 59 2855 (in Chinese) [乔建良, 常本康, 杜晓晴, 牛军, 邹继军 2010 59 2855]
[43] -
[1] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Guo X Y, Du X Q 2011 Acta Phys. Sin. 60 047901 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴 2011 60 047901]
[2] Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109
[3] [4] [5] Tripathi N, Bel L D, Nikzad S, Shahedipour S F 2010 Appl. Phys. Lett. 97 052107
[6] [7] Mizuno I, Nihashi T, Nagai T, Niigaki M, Shimizu Y, Shimano K, Katoh K, Ihara T, Okano K, Matsumoto M, Tachino M 2008 Proc. SPIE 6945 69451N1
[8] Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 567 89
[9] [10] Ulmer M P, Wessels W B, Shahedipour F, Korotkov R Y, Joseph C, Nihashi T 2001 Proc. SPIE 4288 246
[11] [12] Du X Q, Chang B K 2005 Appl. Surf. Sci. 251 267
[13] [14] Zou J J, Yang Z, Qiao J L 2008 J. Semicond. 29 1479
[15] [16] Qiao J L 2010 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [乔建良 2010 博士学位论文 (南京: 南京理工大学)]
[17] [18] Spicer W E, Herrera G A 1993 Proc. SPIE 2022 19
[19] [20] Fisher D G, Enstrom R E, Escher J S, Williams B F 1972 J. Appl. Phys. 43 3815
[21] [22] [23] Vergara G, Herrera G A, Spicer W E 1999 Surf. Sci. 436 83
[24] Escher J S, Schade H 1973 J. Appl. Phys. 44 5309
[25] [26] Bartelink D J, Moll J L, Meyer N L 1963 Phys. Rev. 130 972
[27] [28] Williams B F, Simon R E 1967 Phys. Rev. Lett. 18 485
[29] [30] [31] Qiao J L, Niu J, Yang Z, Zou J J, Chang B K 2009 Opt. Technol. 35 145 (in Chinese) [乔建良, 牛军, 杨智, 邹继军, 常本康 2009 光学技术 35 145]
[32] [33] Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford Univer-sity)
[34] [35] Lui W W, Fukuma M 1986 J. Appl. Phys. 60 1555
[36] Qiao J L, Tian S, Chang B K, Du X Q, Gao P 2009 Acta Phys. Sin. 58 5847 (in Chinese) [乔建良, 田思, 常本康, 杜晓晴, 高频 2009 58 5847]
[37] [38] [39] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Qiao J L, Du X Q 2011 Acta Phys. Sin. 60 057902 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴 2011 60 057902]
[40] [41] Qiao J L, Chang B K, Qian Y S, Du X Q, Zhang Y J, Gao P, Wang X H, Guo X Y, Niu J, Gao Y T 2010 Acta Phys. Sin. 59 3577 (in Chinese) [乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂 2010 59 3577]
[42] Qiao J L, Chang B K, Du X Q, Niu J, Zou J J 2010 Acta Phys. Sin. 59 2855 (in Chinese) [乔建良, 常本康, 杜晓晴, 牛军, 邹继军 2010 59 2855]
[43]
Catalog
Metrics
- Abstract views: 7885
- PDF Downloads: 631
- Cited By: 0