Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the relation between spectral response and absorptivity of GaAs photocathode

Zhao Jing Yu Hui-Long Liu Wei-Wei Guo Jing

Citation:

Analysis of the relation between spectral response and absorptivity of GaAs photocathode

Zhao Jing, Yu Hui-Long, Liu Wei-Wei, Guo Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to study the relation between spectral response and absorptivity of GaAs photocathode, two kinds of GaAs photocathodes are prepared by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. The samples grown by the MBE include varying doping GaAs photocathodes with different values of emission layer thickness from A to E. The thickness of GaAs emission layer is 1.6 μm or 2 μm. The Al component is 0.5 or 0.63. The samples grown by the MOCVD include varying doping or various component GaAs photocathodes with different values of emission layer thickness and different window layer components from F to J. The thickness values of GaAs emission layer are 1.4 μm, 1.6 μm or 1.8 μm, respectively. The Al component is 0.7 or varies from 0.9 to 0. The doping concentration of the GaAs emission layer is divided into 8 sections between 1×1018 cm-3 and 1×1019 cm-3. The experimental spectral response curves for all samples are obtained by the optical spectrum analyzer. And the experimental reflectivity and transmittivity curves are measured by the ultraviolet visible near infrared spectrohootometer. Based on the law of energy conservation, the absorptivity curves are obtained according to the experimental reflectivity and transmittivity. In the same coordinate system, both the curves are obtained by unitary processing according to the max. A similar surface barrier can be given by dividing the normalized absorptivity by the normalized spectral response, and those are termed the similar I barrier and the similar Ⅱ barrier, respectively. The results indicate that for both the GaAs photocathodes, the experimental spectral response curves both tend to move to the infrared band compared with the experimental absorptivity curves. The average energy differences between absorptivity and spectral response are calculated to be 0.3101 eV for the MBE sample, and 0.3025 eV for the MOCVD sample, respectively. The red-shifts of the photocathodes grown by MBE are a bit bigger than those of the photocathodes grown by MOCVD. In the shortwave region, the absorptivity is very large, but the spectral response cuts off nearby 500 nm. In the visible wavelength region, the peak position of the spectral response curve shifts toward the infrared band for several hundred meV in comparison with the absorptivity curve. In the near infrared region, a red shift of several meV appears at the cut-off position of the spectral response curve in comparison with the absorptivity curve. The results have the guiding significance for improving the photoemission performance of wide-spectrum GaAs photocathode by optimizing the optical performance.
      Corresponding author: Zhao Jing, zhaojing7319@njit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701220, 61704075, 61771245), Jiangsu Higher School Natural Science Research Project, China (Grant No. 17KJB510023), and the Special Foundation for Basic Research Program, China (Grant No. JCYJ201614).
    [1]

    Drouhin H J, Hermann C, Lampel G 1985 Phys. Rev. B 31 3859

    [2]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107

    [3]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [4]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese) [邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 56 6109]

    [5]

    Ding H B, Pang W N, Liu Y B, Shang R C 2005 Acta Phys. Sin. 54 4097 (in Chinese) [丁海兵, 庞文宁, 刘义保, 尚仁成 2005 54 4097]

    [6]

    Spindt C J, Besser R S, Cao R 1989 Appl. Phys. Lett. 54 1148

    [7]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149

    [8]

    Mitsuno K, Masuzawa T, Hatanaka Y, Neo Y, Mimura H 2015 3rd International Conference on Nanotechnologies and Biomedical Engineering September 23-26 2015 Chisinau, Republic of Moldova 55 p163

    [9]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [10]

    Jin X, Cotta A A C, Chen G, N’Diaye A T, Schmid A K, Yamamoto N 2014 J. Appl. Phys. 116 174509

    [11]

    Moré S, Tanaka S, Fujii Y, Kamada M 2000 Surf. Sci.454 161

    [12]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectrosc. Spectral Anal. 29 300 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 300]

    [13]

    Jiao G C, Liu Z T, Guo H, Zhang Y J 2016 Chin. Phys. B 25 048505

    [14]

    Zou J J, Ge X W, Zhang Y J, Deng W J, Zhu Z F, Wang W L, Peng X C, Chen Z P, Chang B K 2016 Opt. Express 24 4632

    [15]

    Yu X H 2016 J. Mater. Sci. 51 8259

    [16]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T, Chang B K 2015 Appl. Opt. 54 8521

    [17]

    Yang M Z, Chang B K, Rao W F 2016 Optik 127 10710

    [18]

    Yang M Z, Jin M C, Chang B K 2016 Appl. Opt. 55 8732

    [19]

    Zou J J, Yang Z, Qiao J L, Gao P, Chang B K 2007 Proc. SPIE 6782 67822R

    [20]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20 047801

    [21]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413

    [22]

    Zhao J, Zhang Y J, Chang B K, Zhang J J, Xiong Y J, Shi F, Cheng H C, Cui D X 2011 Appl. Opt. 50 6140

  • [1]

    Drouhin H J, Hermann C, Lampel G 1985 Phys. Rev. B 31 3859

    [2]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107

    [3]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [4]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese) [邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 56 6109]

    [5]

    Ding H B, Pang W N, Liu Y B, Shang R C 2005 Acta Phys. Sin. 54 4097 (in Chinese) [丁海兵, 庞文宁, 刘义保, 尚仁成 2005 54 4097]

    [6]

    Spindt C J, Besser R S, Cao R 1989 Appl. Phys. Lett. 54 1148

    [7]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149

    [8]

    Mitsuno K, Masuzawa T, Hatanaka Y, Neo Y, Mimura H 2015 3rd International Conference on Nanotechnologies and Biomedical Engineering September 23-26 2015 Chisinau, Republic of Moldova 55 p163

    [9]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [10]

    Jin X, Cotta A A C, Chen G, N’Diaye A T, Schmid A K, Yamamoto N 2014 J. Appl. Phys. 116 174509

    [11]

    Moré S, Tanaka S, Fujii Y, Kamada M 2000 Surf. Sci.454 161

    [12]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectrosc. Spectral Anal. 29 300 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 300]

    [13]

    Jiao G C, Liu Z T, Guo H, Zhang Y J 2016 Chin. Phys. B 25 048505

    [14]

    Zou J J, Ge X W, Zhang Y J, Deng W J, Zhu Z F, Wang W L, Peng X C, Chen Z P, Chang B K 2016 Opt. Express 24 4632

    [15]

    Yu X H 2016 J. Mater. Sci. 51 8259

    [16]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T, Chang B K 2015 Appl. Opt. 54 8521

    [17]

    Yang M Z, Chang B K, Rao W F 2016 Optik 127 10710

    [18]

    Yang M Z, Jin M C, Chang B K 2016 Appl. Opt. 55 8732

    [19]

    Zou J J, Yang Z, Qiao J L, Gao P, Chang B K 2007 Proc. SPIE 6782 67822R

    [20]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20 047801

    [21]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413

    [22]

    Zhao J, Zhang Y J, Chang B K, Zhang J J, Xiong Y J, Shi F, Cheng H C, Cui D X 2011 Appl. Opt. 50 6140

  • [1] Wei Bo-Ning, Jiao Zhi-Hong, Zhou Xiao-Xin. Frequency shiftand control ofhigh-order harmonicsof H atom driven by anasymmetric laser pulse. Acta Physica Sinica, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [2] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] Qu Guan-Nan, Li Shuo, Sun Mei-Jiao, Xu Sheng-Nan, Liu Yu, Sun Cheng-Lin, Men Zhi-Wei, Li Zuo-Wei. Temperature effects on structural order of all-trans-β-carotene. Acta Physica Sinica, 2013, 62(7): 077801. doi: 10.7498/aps.62.077801
    [4] Yang Shao-Peng, Li Na, Li Guang, Shi Jiang-Bo, Li Xiao-Wei, Fu Guang-Sheng. Effect of mixed solvents on P3HT:PCBM based solar cell. Acta Physica Sinica, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [5] Hou Qing-Yu, Ma Wen, Ying Chun. First principles study of effects of the concentration of Ga/N highly doped p-type ZnO on electric conductivity performance and red shift. Acta Physica Sinica, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [6] Zhang Zhen-Duo, Hou Qing-Yu, Li Cong, Zhao Chun-Wang. First-principles study of the electronic structure and absorption spectrum of heavily Nd-doped anatase TiO2. Acta Physica Sinica, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [7] Yang Yong-Fu, Fu Rong-Guo, Ma Li, Wang Xiao-Hui, Zhang Yi-Jun. Effect of surface potential barrier on quantum efficiency decay of reflection-mode GaN photocathode. Acta Physica Sinica, 2012, 61(12): 128504. doi: 10.7498/aps.61.128504
    [8] Yang Yong-Fu, Fu Rong-Guo, Zhang Yi-Jun, Wang Xiao-Hui, Zou Ji-Jun. Effect of surface potential barrier on electron escape probability of GaN photocathode. Acta Physica Sinica, 2012, 61(6): 068501. doi: 10.7498/aps.61.068501
    [9] Tao Ye-Wei, Li Shi-Shuai, Feng Xiu-Peng, Huang Jin-Zhao, Liu Chun-Yan, Zhang Zhong. Growth and chracterization of Zn1- x-y Na x Co y O thinfilms prepared by pulsed laser deposition. Acta Physica Sinica, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [10] Niu Jun, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan. Evaluation of surface potential barriers after activation of GaAs photocathode. Acta Physica Sinica, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [11] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [12] Qiao Jian-Liang, Chang Ben-Kang, Du Xiao-Qing, Niu Jun, Zou Ji-Jun. Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [13] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Wen Xian-Lun, Chen Tao, Zhang Ting, Zhang Jian-Wei. Experimental study of optical radiation of hot electrons transport in targets at the rear-side radiation. Acta Physica Sinica, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [14] Wang Xiao, Pan An-Lian, Liu Dan, Bai Yong-Qiang, Zhang Zhao-Hui, Zou Bing-Suo, Zhu Xing. Near-field detected photoluminescence spectra of CdS0.65Se0.35 nanoribbon at room temperature. Acta Physica Sinica, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [15] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [16] Gao Xiao-Yong, Li Rui, Chen Yong-Sheng, Lu Jing-Xiao, Liu Ping, Feng Tuan-Hui, Wang Hong-Juan, Yang Shi-E. Study of the structural and optical properties of microcrystalline silicon film. Acta Physica Sinica, 2006, 55(1): 98-101. doi: 10.7498/aps.55.98
    [17] Liu Xiang-Fei, Jiang Chang-Zhong, Ren Feng, Fu Qiang. Optical absorption, Raman spectra and TEM study of Ag nanoparticles formed by ion implantation into a-SiO2. Acta Physica Sinica, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [18] Zhang Yong, Tang Chao-Qun, Dai Jun. Anatase TiO2 and red-shift introduced by doping with Fe:pseudopotential calculations and ultraviolet spectroscropy. Acta Physica Sinica, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] WANG XIAO-DONG, LIU HUI-YUN, NIU ZHI-CHUAN, FENG SONG-LIN. STUDY OF SELF-ASSEMBLED InAs QUANTUM DOT STRUCTURE COVERED BY InxGa1-xAs(0≤x≤0.3) CAPPING LAYER. Acta Physica Sinica, 2000, 49(11): 2230-2234. doi: 10.7498/aps.49.2230
Metrics
  • Abstract views:  7374
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2017
  • Accepted Date:  28 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map