-
We report on the development of incoherent broadband cavity enhanced absorption spectroscopy system based on a short arc Xenon lamp for trace gas detection and aerosol optical properties measurements. A minimum detection sensitivity of 1.8 10-7cm-1 (1, 0.12 s integrating time, and 50 times average) is obtained on the basis of absorption spectroscopy of NO2 in a spectral range of 520560 nm, which corresponds to a minimum detection concentration of ~33 nmol/mol for NO2. Combining a laboratory aerosol generation system, the extinction coefficients of 600 nm diameter monodispersed ammonium sulfate aerosol are measured under different particle concentrations. A cross-section of 1.12 10-8cm2 for ammonium sulfate at 532 nm wavelength is obtained, which agree well with the literature result of 1.167 10-8cm2. The results demonstrate the ability of our system to quantitativly measure aerosol optical properties.
-
Keywords:
- incoherent broadband cavity enhanced absorption spectroscopy /
- trace gas detection /
- aerosol extinction
[1] Fiedler S E, Hoheisel G, Ruth A A, Hese A 2003 Chem. Phys. Lett. 382 447
[2] Ball S M, Jones R L 2003 Chem. Rev. 103 5239
[3] Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 752 (in Chinese)[杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 59 752]
[4] Ruth A A, Orphal J, Fiedler S E 2007 Appl. Opt. 46 3611
[5] Chen J, Venables D S 2011 Atmos. Meas. Tech. 4 425
[6] Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68
[7] Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916
[8] Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110
[9] Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Tech. 42 890
[10] Wu T, Zhao W, Chen W, Zhang W, Gao X 2009 Appl. Phys. B 94 85
[11] Thompson J E, Spangler H D 2006 Appl. Opt. 45 2465
[12] Nitschke U, Ruth A A, Dixneuf S, Stengel D B 2011 Planta 233 737
[13] Ventrillard-Courtillot I, O’Brien E S, Kassi S, Mejean G, Romanini D 2010 Appl. Phys. B 101 661
[14] Riziq A A, Erlick C, Dinar E, Rudich Y 2007 Atmos. Chem. Phys. 7 1523
[15] Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Bovensmann H, Frerick J, Burrows J P 2003 J. Photochem. Photobiol. A 157 167
[16] Bitter M, Ball S M, Povey I M, Jones R L 2005 Atmos. Chem. Phys. 5 2547
[17] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779
[18] Dixneuf S, Ruth A A, Vaughan S, Varma R M, Orphal J 2009 Atmos. Chem. Phys. 9 823
-
[1] Fiedler S E, Hoheisel G, Ruth A A, Hese A 2003 Chem. Phys. Lett. 382 447
[2] Ball S M, Jones R L 2003 Chem. Rev. 103 5239
[3] Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 752 (in Chinese)[杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 59 752]
[4] Ruth A A, Orphal J, Fiedler S E 2007 Appl. Opt. 46 3611
[5] Chen J, Venables D S 2011 Atmos. Meas. Tech. 4 425
[6] Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68
[7] Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916
[8] Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110
[9] Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Tech. 42 890
[10] Wu T, Zhao W, Chen W, Zhang W, Gao X 2009 Appl. Phys. B 94 85
[11] Thompson J E, Spangler H D 2006 Appl. Opt. 45 2465
[12] Nitschke U, Ruth A A, Dixneuf S, Stengel D B 2011 Planta 233 737
[13] Ventrillard-Courtillot I, O’Brien E S, Kassi S, Mejean G, Romanini D 2010 Appl. Phys. B 101 661
[14] Riziq A A, Erlick C, Dinar E, Rudich Y 2007 Atmos. Chem. Phys. 7 1523
[15] Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Bovensmann H, Frerick J, Burrows J P 2003 J. Photochem. Photobiol. A 157 167
[16] Bitter M, Ball S M, Povey I M, Jones R L 2005 Atmos. Chem. Phys. 5 2547
[17] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779
[18] Dixneuf S, Ruth A A, Vaughan S, Varma R M, Orphal J 2009 Atmos. Chem. Phys. 9 823
Catalog
Metrics
- Abstract views: 8220
- PDF Downloads: 780
- Cited By: 0