搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应

郑利娟 程天海 吴俣

引用本文:
Citation:

黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应

郑利娟, 程天海, 吴俣

Effect of aggregated black carbon aging on infrared absorption and longwave radiative forcing

Zheng Li-Juan, Cheng Tian-Hai, Wu Yu
PDF
导出引用
  • 黑碳气溶胶是当前气溶胶辐射强迫评估中最不确定的因子.本文通过构建黑碳的微物理模型,分别模拟了新鲜状态的黑碳气溶胶和混合生长(老化)后被硫酸盐包裹的黑碳气溶胶,利用叠加T矩阵方法计算获得了具有团簇形态和多成分混合的黑碳气溶胶红外吸收特性,通过大气辐射传输模型模拟了黑碳气溶胶的长波辐射强迫,分析了典型理化参数的敏感性.发现黑碳混合生长可以显著增强其大气层顶的长波辐射强迫,最高可达3倍.而且,包裹黑碳的硫酸盐半径越大,将明显增强大气层顶的黑碳长波辐射强迫.这些发现将有助于降低黑碳气溶胶气候效应评估的不确定性.
    Black carbon aerosols affect the shortwave and longwave radiation in climate in a strong yet uncertain way. In aging process, black carbon particles coated by co-emitted aerosols tend to reduce the shortwave radiative forcing of freshly emitted black carbon at the top of atmosphere (TOA), however, this effect is still unclear in the longwave range. Here in this work, we investigate the effect of black carbon aging on longwave radiative forcing. The freshly emitted black carbon aerosols are simulated to be fractal aggregates consisting of hundreds of small spherical primary particles, and these aggregated black carbon aerosols tend to be fully coated by the large sulfate particles after aging. The optical properties of these freshly emitted and internally mixed black carbon aerosols are simulated using the numerically exact superposition T-matrix method, and their longwave radiative forcings are calculated by the radiative transfer equation solver. The results indicate that the black carbon longwave radiative forcing at TOA is remarkably amplified (up to 3) by coating the large sulfate particles, while the black carbon shortwave radiative forcings decrease during their aging. Moreover, the thicker sulfate coatings tend to increase the longwave radiative forcings of black carbon aerosols at TOA. These findings should improve our understanding of the effect of black carbon aging on their longwave radiative forcings and provide guidance for assessing the climate change.
      通信作者: 程天海, chength@radi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41401386,41371015,41001207)、国家高分辨率对地观测系统重大专项(批准号:30-Y20A21-9003-15/17)和遥感科学国家重点实验室开放基金(批准号:OFSLRSS201619)资助的课题.
      Corresponding author: Cheng Tian-Hai, chength@radi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41401386, 41371015, 41001207), the Major Special Project-the China High-Resolution Earth Observation System (Grant No. 30-Y20A21-9003-15/17) and Open Fund Project of State Key Laboratory of Remote Sensing Science, China (Grant No. OFSLRSS201619).
    [1]

    Jacobson M Z 2001 Nature 409 695

    [2]

    Bellouin N, Boucher O, Haywood J, Reddy M S 2005 Nature 438 1138

    [3]

    Shindell D, Faluvegi G 2009 Nature Geosci. 2 294

    [4]

    Ramanathan V, Carmichael G 2008 Nature Geosci. 1 221

    [5]

    Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, Boucher O, DeAngelo B J, Flanner M G, Ghan S, Krcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S 2013 J. Geophys. Res.:Atmos. 118 5380

    [6]

    Adachi K, Buseck P R 2008 Atmos. Chem. Phys. 8 6469

    [7]

    China S, Mazzoleni C, Gorkowski K, Aiken A C, Dubey M K 2013 Nat. Commun. 4 2122

    [8]

    McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini M C, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel T F, Murphy D M, O'Dowd C D, Snider J R, Weingartner E 2006 Atmos. Chem. Phys. 6 2593

    [9]

    Zhou Y, Savijrvi H 2014 Atmos. Res. 135 102

    [10]

    Ramana, M V, Ramanathan V, Feng Y, Yoon S C, Kim S W, Carmichael G R, Schauer J J 2010 Nature Geosci. 3 542

    [11]

    Kahnert M, Nousiainen T, Lindqvist H, Ebert M 2012 Opt. Express 20 10042

    [12]

    Cappa C D, Onasch T B, Massoli P, Worsnop D R, Bates T S, Cross E S, Davidovits P, Hakala J, Hayden K L, Jobson B T, Kolesar K R, Lack D A, Lerner B M, Li S M, Mellon D, Nuaaman I, Olfert J S, Petj T, Quinn P K, Song C, Subramanian R, Williams E J, Zaveri R A 2012 Science 337 1078

    [13]

    Jacobson M Z 2013 Science 339 393

    [14]

    Cappa C D, Onasch T B, Massoli P, Worsnop D R, Bates T S, Cross E S, Davidovits P, Hakala J, Hayden K L, Jobson B T, Kolesar K R, Lack D A, Lerner B M, Li S M, Mellon D, Nuaaman I, Olfert J S, Petj T, Quinn P K, Song C, Subramanian R, Williams E J, Zaveri R A 2013 Science 339 393

    [15]

    Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M 2013 Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge:Cambridge University Press) p573

    [16]

    Widmann J F, Yang J C, Smith T J, Manzello S L, Mulholland G W 2003 Combust. Flame 134 119

    [17]

    Kahnert M 2010 Atmos. Chem. Phys. 10 8319

    [18]

    Prasanna S, Rivire P H, Soufiani A 2014 J. Quant. Spectrosc. Radiat. Transfer 148 141

    [19]

    Smith A J A, Peters D M, McPheat R, Lukanihins S, Grainger R G 2015 J. Geophys. Res.:Atmos. 120 9670

    [20]

    Heinson W R, Chakrabarty R K 2016 Opt. Lett. 41 808

    [21]

    Mikhailov E F, Vlasenko S S, Podgorny I A, Ramanathan V, Corrigan C E 2006 J. Geophy. Res.:Atmos. 111 D7

    [22]

    Zhang R, Khalizov A F, Pagels J, Zhang D, Xue H, McMurry P H 2008 Proc. Natl. Acad. Sci. 105 10291

    [23]

    Khalizov A F, Xue H, Wang L, Zheng J, Zhang R 2009 J. Phys. Chem. A 113 1066

    [24]

    Bueno P A, Havey D K, Mulholland G W, Hodges J T, Gillis K A, Dickerson R R, Zachariah M R 2011 Aerosol. Sci. Tech. 45 1217

    [25]

    Mishchenko M I, Dlugach J M 2012 Opt. Lett. 37 704

    [26]

    Cheng T, Gu X, Wu Y, Chen H 2014 J. Quant. Spectrosc. Radiat. Transfer 147 196

    [27]

    Wu Y, Cheng T, Zheng L, Chen H, Xu H 2015 J. Quant. Spectrosc. Radiat. Transfer 157 1

    [28]

    Fierce L, Bond T C, Bauer S E, Mena F, Riemer N 2016 Nat. Commun. 7 1

    [29]

    You R, Radney J G, Zachariah M R, Zangmeister C D 2016 Environ. Sci. Technol. 50 7982

    [30]

    Schwarz J P, Gao R S, Spackman J R, Watts L A, Thomson D S, Fahey D W, Ryerson T B, Peischl J, Holloway J S, Trainer M, Frost G J, Baynard T, Lack D A, Gouw J A de, Warneke C, Del Negro L A 2008 Geophys. Res. Lett. 35 L13810

    [31]

    Lack D A, Moosmller H, McMeeking G R, Chakrabarty R K, Baumgardner D 2014 Anal. Bioanal. Chem. 406 99

    [32]

    Chakrabarty R K, Beres N D, Moosmller H, China S, Mazzoleni C, Dubey M K, Liu L, Mishchenko M I 2014 Sci. Rep. 4 1

    [33]

    Li W, Shao L, Zhang D, Ro C, Hu M, Bi X, Geng H, Matsuki A, Niu H, Chen J 2016 J. Clean. Prod. 112 1330

    [34]

    Liu L, Mishchenko M I, Arnott W P 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2656

    [35]

    Wu Y, Cheng T, Gu X, Zheng L, Chen H, Xu H 2014 J. Quant. Spectrosc. Radiat. Transfer 135 9

    [36]

    Hentschel H G E 1984 Phys. Rev. Lett. 52 212

    [37]

    Cheng T, Wu Y, Gu X, Chen H 2015 Opt. Express 23 10808

    [38]

    Bond T C, Bergstrom R W 2006 Aerosol. Sci. Tech. 40 27

    [39]

    John W, Wall S M, Ondo J L, Winklmayr W 1990 Atmos. Environ. Part A. General Topics 24 2349

    [40]

    Chang H, Charalampopoulos T T 1990 Procee. Roy. Soc. Lon. Ser. A:Math. Phys. Sci. 430 577

    [41]

    Toon O B, Pollack J B, Khare B N 1976 J. Geophys. Res. 81 5733

    [42]

    Mackowski D W, Mishchenko M I 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2182

    [43]

    Mishchenko M I, Liu L, Mackowski D W 2013 J. Quant. Spectrosc. Radiat. Transfer 123 135

    [44]

    Mackowski D W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 264

    [45]

    Buras R, Dowling T, Emde C 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2028

    [46]

    Mayer B, Kylling A 2005 Atmos. Chem. Phys. 5 1855

    [47]

    Gasteiger J, Emde C, Mayer B, Buras R, Buehler S A, Lemke O 2014 J. Quant. Spectrosc. Radiat. Transfer 148 99

    [48]

    Kahnert M, Nousiainen T, Lindqvist H 2013 Opt. Express 21 7974

    [49]

    Wu Y, Cheng T, Zheng L, Chen H 2016 J. Quant. Spectrosc. Radiat. Transfer 179 139

    [50]

    Cheng T, Wu Y, Chen H 2014 Opt. Express 22 15904

    [51]

    Wu Y, Cheng T, Zheng L 2016 J. Quant. Spectrosc. Radiat. Transfer 182 1

    [52]

    Wu Y, Cheng T, Zheng L, Chen H 2015 Aerosol. Sci. Tech. 49 941

    [53]

    Lubin D, Satheesh S K, McFarquar G, Heymsfield A J 2007 J. Geophys. Res.:Atmos. 107 1

    [54]

    Kahnert M, Devasthale A 2011 Atmos. Chem. Phys. 11 11745

    [55]

    Adachi K, Chung S H 2010 J. Geophys. Res.:Atmos. 115 D15206

    [56]

    Wu Y, Cheng T, Zheng L, Chen H 2016 Sci. Rep. 6 38592

  • [1]

    Jacobson M Z 2001 Nature 409 695

    [2]

    Bellouin N, Boucher O, Haywood J, Reddy M S 2005 Nature 438 1138

    [3]

    Shindell D, Faluvegi G 2009 Nature Geosci. 2 294

    [4]

    Ramanathan V, Carmichael G 2008 Nature Geosci. 1 221

    [5]

    Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, Boucher O, DeAngelo B J, Flanner M G, Ghan S, Krcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S 2013 J. Geophys. Res.:Atmos. 118 5380

    [6]

    Adachi K, Buseck P R 2008 Atmos. Chem. Phys. 8 6469

    [7]

    China S, Mazzoleni C, Gorkowski K, Aiken A C, Dubey M K 2013 Nat. Commun. 4 2122

    [8]

    McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini M C, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel T F, Murphy D M, O'Dowd C D, Snider J R, Weingartner E 2006 Atmos. Chem. Phys. 6 2593

    [9]

    Zhou Y, Savijrvi H 2014 Atmos. Res. 135 102

    [10]

    Ramana, M V, Ramanathan V, Feng Y, Yoon S C, Kim S W, Carmichael G R, Schauer J J 2010 Nature Geosci. 3 542

    [11]

    Kahnert M, Nousiainen T, Lindqvist H, Ebert M 2012 Opt. Express 20 10042

    [12]

    Cappa C D, Onasch T B, Massoli P, Worsnop D R, Bates T S, Cross E S, Davidovits P, Hakala J, Hayden K L, Jobson B T, Kolesar K R, Lack D A, Lerner B M, Li S M, Mellon D, Nuaaman I, Olfert J S, Petj T, Quinn P K, Song C, Subramanian R, Williams E J, Zaveri R A 2012 Science 337 1078

    [13]

    Jacobson M Z 2013 Science 339 393

    [14]

    Cappa C D, Onasch T B, Massoli P, Worsnop D R, Bates T S, Cross E S, Davidovits P, Hakala J, Hayden K L, Jobson B T, Kolesar K R, Lack D A, Lerner B M, Li S M, Mellon D, Nuaaman I, Olfert J S, Petj T, Quinn P K, Song C, Subramanian R, Williams E J, Zaveri R A 2013 Science 339 393

    [15]

    Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M 2013 Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge:Cambridge University Press) p573

    [16]

    Widmann J F, Yang J C, Smith T J, Manzello S L, Mulholland G W 2003 Combust. Flame 134 119

    [17]

    Kahnert M 2010 Atmos. Chem. Phys. 10 8319

    [18]

    Prasanna S, Rivire P H, Soufiani A 2014 J. Quant. Spectrosc. Radiat. Transfer 148 141

    [19]

    Smith A J A, Peters D M, McPheat R, Lukanihins S, Grainger R G 2015 J. Geophys. Res.:Atmos. 120 9670

    [20]

    Heinson W R, Chakrabarty R K 2016 Opt. Lett. 41 808

    [21]

    Mikhailov E F, Vlasenko S S, Podgorny I A, Ramanathan V, Corrigan C E 2006 J. Geophy. Res.:Atmos. 111 D7

    [22]

    Zhang R, Khalizov A F, Pagels J, Zhang D, Xue H, McMurry P H 2008 Proc. Natl. Acad. Sci. 105 10291

    [23]

    Khalizov A F, Xue H, Wang L, Zheng J, Zhang R 2009 J. Phys. Chem. A 113 1066

    [24]

    Bueno P A, Havey D K, Mulholland G W, Hodges J T, Gillis K A, Dickerson R R, Zachariah M R 2011 Aerosol. Sci. Tech. 45 1217

    [25]

    Mishchenko M I, Dlugach J M 2012 Opt. Lett. 37 704

    [26]

    Cheng T, Gu X, Wu Y, Chen H 2014 J. Quant. Spectrosc. Radiat. Transfer 147 196

    [27]

    Wu Y, Cheng T, Zheng L, Chen H, Xu H 2015 J. Quant. Spectrosc. Radiat. Transfer 157 1

    [28]

    Fierce L, Bond T C, Bauer S E, Mena F, Riemer N 2016 Nat. Commun. 7 1

    [29]

    You R, Radney J G, Zachariah M R, Zangmeister C D 2016 Environ. Sci. Technol. 50 7982

    [30]

    Schwarz J P, Gao R S, Spackman J R, Watts L A, Thomson D S, Fahey D W, Ryerson T B, Peischl J, Holloway J S, Trainer M, Frost G J, Baynard T, Lack D A, Gouw J A de, Warneke C, Del Negro L A 2008 Geophys. Res. Lett. 35 L13810

    [31]

    Lack D A, Moosmller H, McMeeking G R, Chakrabarty R K, Baumgardner D 2014 Anal. Bioanal. Chem. 406 99

    [32]

    Chakrabarty R K, Beres N D, Moosmller H, China S, Mazzoleni C, Dubey M K, Liu L, Mishchenko M I 2014 Sci. Rep. 4 1

    [33]

    Li W, Shao L, Zhang D, Ro C, Hu M, Bi X, Geng H, Matsuki A, Niu H, Chen J 2016 J. Clean. Prod. 112 1330

    [34]

    Liu L, Mishchenko M I, Arnott W P 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2656

    [35]

    Wu Y, Cheng T, Gu X, Zheng L, Chen H, Xu H 2014 J. Quant. Spectrosc. Radiat. Transfer 135 9

    [36]

    Hentschel H G E 1984 Phys. Rev. Lett. 52 212

    [37]

    Cheng T, Wu Y, Gu X, Chen H 2015 Opt. Express 23 10808

    [38]

    Bond T C, Bergstrom R W 2006 Aerosol. Sci. Tech. 40 27

    [39]

    John W, Wall S M, Ondo J L, Winklmayr W 1990 Atmos. Environ. Part A. General Topics 24 2349

    [40]

    Chang H, Charalampopoulos T T 1990 Procee. Roy. Soc. Lon. Ser. A:Math. Phys. Sci. 430 577

    [41]

    Toon O B, Pollack J B, Khare B N 1976 J. Geophys. Res. 81 5733

    [42]

    Mackowski D W, Mishchenko M I 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2182

    [43]

    Mishchenko M I, Liu L, Mackowski D W 2013 J. Quant. Spectrosc. Radiat. Transfer 123 135

    [44]

    Mackowski D W 2014 J. Quant. Spectrosc. Radiat. Transfer 133 264

    [45]

    Buras R, Dowling T, Emde C 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2028

    [46]

    Mayer B, Kylling A 2005 Atmos. Chem. Phys. 5 1855

    [47]

    Gasteiger J, Emde C, Mayer B, Buras R, Buehler S A, Lemke O 2014 J. Quant. Spectrosc. Radiat. Transfer 148 99

    [48]

    Kahnert M, Nousiainen T, Lindqvist H 2013 Opt. Express 21 7974

    [49]

    Wu Y, Cheng T, Zheng L, Chen H 2016 J. Quant. Spectrosc. Radiat. Transfer 179 139

    [50]

    Cheng T, Wu Y, Chen H 2014 Opt. Express 22 15904

    [51]

    Wu Y, Cheng T, Zheng L 2016 J. Quant. Spectrosc. Radiat. Transfer 182 1

    [52]

    Wu Y, Cheng T, Zheng L, Chen H 2015 Aerosol. Sci. Tech. 49 941

    [53]

    Lubin D, Satheesh S K, McFarquar G, Heymsfield A J 2007 J. Geophys. Res.:Atmos. 107 1

    [54]

    Kahnert M, Devasthale A 2011 Atmos. Chem. Phys. 11 11745

    [55]

    Adachi K, Chung S H 2010 J. Geophys. Res.:Atmos. 115 D15206

    [56]

    Wu Y, Cheng T, Zheng L, Chen H 2016 Sci. Rep. 6 38592

  • [1] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究.  , 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [2] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测.  , 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [3] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [4] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [5] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究.  , 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [6] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真.  , 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [7] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响.  , 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [8] 齐月, 房世波, 周文佐. 近50年来中国东、西部地面太阳辐射变化及其与大气环境变化的关系.  , 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [9] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法.  , 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [10] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析.  , 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [11] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线.  , 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [12] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究.  , 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [13] 李霞, 张镭. 基于后向轨迹追踪模式分析SACOL气溶胶来源及其光学特性.  , 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [14] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究.  , 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [15] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究.  , 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [16] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展.  , 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [17] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶.  , 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [18] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数.  , 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布.  , 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 夏柱红, 方黎, 郑海洋, 胡睿, 张玉莹, 孔祥和, 顾学军, 朱元, 张为俊, 鲍健, 熊鲁源. 气溶胶单粒子粒径的实时测量方法研究.  , 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
计量
  • 文章访问数:  6643
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map