搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量

熊枫 彭志敏 王振 丁艳军 吕俊复 杜艳君

引用本文:
Citation:

CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量

熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君

Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance

Xiong Feng, Peng Zhi-Min, Wang Zhen, Ding Yan-Jun, Lü Jun-Fu, Du Yan-Jun
PDF
HTML
导出引用
  • H2S作为一种有毒且腐蚀性较强的气体污染物, 实现其浓度的准确测量意义重大. 实际工业过程中, H2S测量常受其他排放产物的干扰, 本文基于腔衰荡吸收光谱技术(CRDS)通过扫描6336—6339 cm–1范围内的吸收光谱, 实现了H2S/CO2/CO三组分物质浓度的同步测量, 为实际工业过程中物质干扰下的H2S浓度测量提供新思路. 首先, 对不同采样长度下提取衰荡时间的准确性进行分析, 发现衰荡信号的采样长度约为衰荡时间的8倍时, 衰荡时间提取效果最好; 通过不同压力对比实验确定最佳实验压力工况为50 kPa, 并将最佳采样长度与压力工况应用于H2S浓度测量. 随后, 改变H2S浓度对CO2/CO干扰下系统对痕量H2S浓度的测量效果进行检验, 并对不同稀释比例下浓度测量结果的线性度进行分析. 最后, 对本文CRDS系统的检测限进行分析, 通过对4组低浓度H2S光谱的信噪比进行分析, 得到H2S的检出限为6.9 ppb (1 ppb = 10–9); 通过对系统长期测量结果进行Allan方差分析, 得到系统对H2S物质浓度的检测下限约在2 ppb左右.
    Since H2S is a corrosive and toxic gas pollutant, the accurate measurement of its concentration is significant. However, in the practical industrial processes, it is difficult to implement because of the disturbance caused by other emissions such as CO2 and CO. Therefore, in this work, the concentration of H2S, CO2 and CO are measured simultaneously based on cavity ring-down spectroscopy (CRDS) as a viable alternative to measure the concentration of H2S accurately when CO2 and CO exist. First, the wavelength of mixed gas within a range of 6336–6339 cm–1 is selected as the target region where the spectral line intensity of H2S is stronger than 10 times that of CO2 or CO and the water absorption is extremely weak. Second, the influence of the sampling length (Tm) on the accuracy of the ring-down time is analyzed by evaluating average (accuracy), standard deviation (precision) and consumption time (speed). Third, the experiments are carried out at different pressures in order to obtain the optimal pressure condition. Fourth, the concentration of trace H2S is measured when the disturbances caused by CO2 or CO are added, and the error of the measured concentration is analyzed. Finally, the detection limit of CRDS-based system is calculated to be 6.9 ppb by analyzing the SNR of four groups of low concentration H2S spectra, while the lower limit of detection of CRDS-based system is calculated to be 2 ppb by analyzing the Allan variance of long-term data. The measured concentration and its desired value show a good linearity at different dilution ratios. Both the high linearity and the low detection limit of H2S indicate the effectiveness of the CRDS-based measurement system to measure H2S when CO2 and CO exist. The successful application of the CRDS-based system to the measurement of H2S shows its promising prospect in gas concentration measurement for practical industrial processes.
      通信作者: 杜艳君, YanjunDu@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51906120)和国家重点研发计划(批准号: 2019YFB20060002)资助的课题
      Corresponding author: Du Yan-Jun, YanjunDu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51906120) and the National Key R&D Program of China (Grant No. 2019YFB20060002)
    [1]

    Glass D C, 1990 Ann. Occup. Hyg. 34 323

    [2]

    Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824

    [3]

    Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar

    [4]

    Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar

    [5]

    杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar

    Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar

    [6]

    Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar

    [7]

    许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113

    Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113

    [8]

    王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118

    Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118

    [9]

    Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar

    [10]

    Kim K 2011 Atmos. Environ. 45 3366Google Scholar

    [11]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [12]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [13]

    Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar

    [14]

    张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943

    Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943

    [15]

    何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113

    He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113

    [16]

    Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar

    [17]

    王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 71 184205Google Scholar

    Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar

    [18]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145

    [19]

    Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10

    [21]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [22]

    Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar

    [23]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [24]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [25]

    Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769

    [26]

    Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar

    [27]

    Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar

    [28]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [29]

    Dicke R H 1953 Phy. Rev. 89 472Google Scholar

    [30]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar

    [31]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [32]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [33]

    Allan D W 1966 P. IEEE 54 221Google Scholar

  • 图 1  腔衰荡光谱基本原理

    Fig. 1.  Basic schematic of cavity ring-down spectroscopy.

    图 2  腔衰荡光谱测量系统(PC: 计算机, LC: 激光器控制器, DFB: 激光器, ISO: 光纤隔离器, AOM: 声光调制器, RDC: 衰荡腔, PZT: 压电陶瓷, APD: 雪崩式光电探测器, PG: 脉冲信号发生器, RF: 射频发生器, DAQ: 数据采集系统, RD: 衰荡信号, Trig: 触发信号)

    Fig. 2.  Cavity ring-down spectroscopy measurement system (PC: personal computer, LC: laser controller, DFB: DFB laser, ISO: fiber isolator, AOM: acousto-optic modulator, RDC: ring-down cavity, PZT: piezoceramics, APD: avalanche photodiode, PG: pulse generator, RF: radio frequency generator, DAQ: digital acquisition, RD: ring-down signal, Trig: trigger)

    图 3  不同衰荡信号采样长度

    Fig. 3.  Different sampling length of ring-down signal.

    图 4  不同采样长度下, 衰荡时间提取效果

    Fig. 4.  The result of ring-down time extraction in different sampling length.

    图 5  待测区域谱线展示与不同压力测量结果

    Fig. 5.  Display of spectral lines in measured region and the measured spectra in different pressures.

    图 6  仅改变H2S浓度测量结果

    Fig. 6.  the spectra in only H2S concentration changed.

    图 7  变物质浓度测量光谱与线性度分析

    Fig. 7.  The spectra of changing concentration and analysis of linearity.

    图 8  低浓度H2S测量结果

    Fig. 8.  The spectra of H2S in low concentration.

    图 9  吸收系数Allan方差

    Fig. 9.  Allan variance of absorption coefficient.

    Baidu
  • [1]

    Glass D C, 1990 Ann. Occup. Hyg. 34 323

    [2]

    Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824

    [3]

    Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar

    [4]

    Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar

    [5]

    杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar

    Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar

    [6]

    Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar

    [7]

    许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113

    Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113

    [8]

    王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118

    Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118

    [9]

    Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar

    [10]

    Kim K 2011 Atmos. Environ. 45 3366Google Scholar

    [11]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [12]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [13]

    Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar

    [14]

    张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943

    Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943

    [15]

    何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113

    He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113

    [16]

    Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar

    [17]

    王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 71 184205Google Scholar

    Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar

    [18]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145

    [19]

    Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10

    [21]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [22]

    Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar

    [23]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [24]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [25]

    Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769

    [26]

    Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar

    [27]

    Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar

    [28]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [29]

    Dicke R H 1953 Phy. Rev. 89 472Google Scholar

    [30]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar

    [31]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [32]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [33]

    Allan D W 1966 P. IEEE 54 221Google Scholar

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比.  , 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 田思迪, 杜艳君, 李济东, 丁艳军, 彭志敏, 吕俊复, 潘超, 冯小雅. H2S分子6320—6350 cm–1波段谱线参数高精度测量.  , 2023, 72(2): 024205. doi: 10.7498/aps.72.20221855
    [3] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测.  , 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [4] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量.  , 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [5] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统.  , 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [6] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量.  , 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [7] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱.  , 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [8] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量.  , 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [9] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量.  , 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [10] 邵君宜, 林兆祥, 刘林美, 龚威. 1.572 μm附近CO2吸收光谱的测量.  , 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [11] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理.  , 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [12] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究.  , 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [13] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基.  , 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [14] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究.  , 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [15] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度.  , 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [16] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究.  , 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [17] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度.  , 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [18] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究.  , 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [19] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究.  , 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
    [20] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱.  , 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
计量
  • 文章访问数:  3985
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2022-11-26
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map