-
The phase evolution, microstructure and magnetic properties of PrxFe82-x-yTiyCo10B4C4 (x=9—10.5; y=0, 2) melt-spun ribbons have been investigated. All ribbons are mainly comprised of the 2 ∶14 ∶1, 2 ∶17 and α-(Fe, Co) phases. For the group of Ti-free ribbons (y=0), the coercivity increases with increasing x while the remanence decreases with increasing x. When 2 at.%Ti is substituted for Fe in the Ti-free ribbons, the magnetic properties are remarkably enhanced. The coercivity and squareness of demagnetization curve of the Ti-substitution ribbons are substantially improved without a sacrifice of remanence (except for x=9), the remanence even obviously increases at x=10.5. The optimal magnetic properties of Br=9.6 kGs (1 Gs=10-4T), iHc =10.2 kOe (1 Oe=79.5775 A/m), (BH)max=17.4 MGOe have been obtained in Ti-substituted Pr10.5Fe69.5Ti2Co10B4C4 group. The volume fraction of the 2 ∶14 ∶1 phase increases with increasing x, which leads to an increase of coercivity. Ti-substitution suppresses the grain growth of α-(Fe, Co) phase during annealing process, which makes the volume ratio of magnetically hard phase and soft phase and grain size tend to have optimal values, and the intergranular exchange coupling substantially enhances.
-
Keywords:
- nanocrystalline permannet magnets /
- Pt2Fe14(C /
- B) /
- Ti-substitute /
- exchange coupling
[1] Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101
[2] Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812
[3] Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588
[4] Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859
[5] Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315
[6] Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 57 3823]
[7] Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 53 3171]
[8] Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 57 526]
[9] Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100
[10] Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112
[11] Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167
[12] Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263
[13] Xing F, Ho W W 1990 J. Appl. Phys. 67 4604
[14] Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223
[15] Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349
[16] Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704
[17] Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231
[18] Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627
[19] Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403
[20] Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647
[21] Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316
[22] Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769
[23] Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388
[24] Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201
[25] Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129
-
[1] Coehoorn R, Mooij D B, Ward C 1989 J. Magn. Magn. Mater. 80 101
[2] Skomski R, Coey J M D 1993 Phys. Rev. B 48 5812
[3] Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588
[4] Zhang W Y, Zhang J, Cheng Z H 2001 J. Phys.: Condens. Matter. 13 3859
[5] Daniil M, Okumura H, Hadjipanayis G C 2000 IEEE Trans. Magn. 36 3315
[6] Li X M, Liu T, Guo Z H 2008 Acta Phys. Sin. 57 3823 (in Chinese) [李岫梅、刘 涛、郭朝晖 2008 57 3823]
[7] Feng W C, Gao R W, Han G B, Li W, Zhu M G 2004 Acta Phys. Sin. 53 3171 (in Chinese) [冯维存、高汝伟、韩广兵、李 卫、朱明刚 2004 53 3171]
[8] Zhang R, Liu Y, Gao S J, Xie Z, Tu M J 2008 Acta Phys. Sin. 57 526 (in Chinese) [张 然、刘 颖、高升吉、谢 治、涂铭旌 2008 57 526]
[9] Schrefl T, Fidler J, Kronmüller H 1994 Phys. Rev. B 49 6100
[10] Abache C, Osterreicher H 1985 J. Appl. Phys. 57 4112
[11] Boer F R, Huang Y K, Zhang Z D 1988 J. Magn. Magn. Mater. 72 167
[12] Boer F R, Verhoef R, Zhang Z D 1988 J. Magn. Magn. Mater. 73 263
[13] Xing F, Ho W W 1990 J. Appl. Phys. 67 4604
[14] Schrefl T, Fidler J 1999 IEEE Trans. Magn. 35 3223
[15] Mooij D B, Buschow K H J 1988 J. Less-Common. Met. 142 349
[16] Coehoorn R, Duchateau J P W B, Denissen C J M 1989 J. Appl. Phys.65 704
[17] Sui Y C, Zhang Z D, Xiao Q F 1996 J. Phys.: Condens. Matter. 8 11231
[18] Yang J B, Gutfleisch O, Handstein A 2000 Appl. Phys. Lett. 76 3627
[19] Zhang W Y, Du H L, Jiang J S 2003 J. Magn. Magn. Mater. 257 403
[20] Zhang W Y, Rong C B, Zhang J 2002 J. Appl. Phys. 92 7647
[21] Daniil M, Okumura H, Hadjipanayis G C, Sellmyer D 2003 J. Magn. Magn. Mater. 267 316
[22] Wang Z C, Davies H A, Zhou S Z 2002 J. Appl. Phys. 91 3769
[23] Kelly P E, Grady K O, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn. 25 388
[24] Zhang W Y, Chang H W, Chiu C H, Chang W C 2004 Physica B 344 201
[25] Xiao L X, Chen X, Altounian Z, Ryan D H 1992 Appl. Phys. Lett. 60 129
Catalog
Metrics
- Abstract views: 8722
- PDF Downloads: 739
- Cited By: 0