搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单畴GdBCO超导块材制备方法的改进及超导特性研究

李国政 杨万民

引用本文:
Citation:

单畴GdBCO超导块材制备方法的改进及超导特性研究

李国政, 杨万民

Fabrication method improvement and superconducting property investigation of single domain GdBCO bulk superconductors

Li Guo-Zheng, Yang Wan-Min
PDF
导出引用
  • 通过改变液相源成分和先驱块的装配方式对顶部籽晶熔渗生长方法(TSIG)进行改进,并用新方法成功制备了单畴Gd-Ba-Cu-O(GdBCO)超导块材.对样品形貌和微观结构的研究发现,应用新方法制备的样品呈现出良好的织构度,其内俘获的Gd2BaCuO5(Gd-211)内含物分布均匀且粒度较小.超导性能的测试表明,样品具有较高的超导转变温度和自场临界电流密度,表现出较大的磁悬浮力.此外,应用新方法可以简化实验步骤,缩短制备周期,提高实验的稳定性,从而降低了实验难度,为大尺寸单畴块材的批量化制备打下了基础.
    Top seeded infiltration and growth method (TSIG) is improved by adopting a new liquid source and novel configuration. And single-domain Gd-Ba-Cu-O (GdBCO) bulk superconductors are successfully prepared using the improved method. Experimental observations on the morphology and the microstructure show that the samples exhibit good texture and homogeneous distribution of fine Gd2BaCuO5 (Gd-211) inclusions. Superconductive measurements reveal that the sample exhibits high superconducting transition temperature, self-field critical current density, and strong levitation force. In addition, the improved method can be used to simplify the process flow, shorten the experimental cycle, and hance the stability of the process, thus reducing the experimental difficulties. The results lay a good foundation for the batch production of large single domain bulks.
    • 基金项目: 国家自然科学基金(批准号:50872079),国家高技术研究发展计划(批准号:2007AA03Z241),中央高校基本科研业务费专项资金(批准号:2010ZYGX021,GK200901017)资助的课题.
    [1]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军、姚仲文、郁金南、郁 刚、罗金汉、闻海虎、杨万里、李世亮 2000 49 1356]

    [2]

    Feng Y, Zhou L, Yang W M, Zhang C P, Wang J R, Yu Z M, Wu X Z 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍、汪京荣、于泽铭、吴晓祖 2000 49 146]

    [3]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿、姚 忻、李 刚 2006 55 844]

    [4]

    Zhang Y L, Yao X, Zhang H, Jin Y P 2005 Acta Phys. Sin. 54 3380 (in Chinese) [张玉龙、姚 忻、张 宏、金燕苹 2005 54 3380]

    [5]

    Xu C Y, Shi L, Zuo J, Pang W H, Zhang Y L 1996 Acta Phys. Sin. 45 893 (in Chinese) [许存义、石 磊、左 健、庞文华、张裕恒 1996 45 893]

    [6]

    Zhou Z J, Zhou Z W, Zhou L Y, Lin L, Li X G, Feng Q R 2004 Chin. Phys. 13 1957

    [7]

    Ding F Z, Lü X D, Gu H W, Li T, Cao J L 2009 Chin. Phys. B 18 1631

    [8]

    Shen C X, Shen X L, Lu W, Dong X L, Li Z C, Xiong J W, Zhou F 2008 Chin. Phys. B 17 1425

    [9]

    Shabna R, Sarun P M, Vinu S, Syamaprasad U 2009 Chin. Phys. B 18 4000

    [10]

    Babu N H, Lo W, Cardwell D A, Campbell A M 1999 Appl. Phys. Lett. 75 2981

    [11]

    Muralidhar M, Sakai N, Chikumoto N, Jirsa M, Machi T, Nishiyama M, Wu Y, Murakami M 2002 Phys. Rev. Lett. 89 237001

    [12]

    Shen X L, Li Z C, Shen C X, Lu W, Dong X L, Zhou F, Zhao Z X 2009 Chin. Phys. B 18 2893

    [13]

    Gawalek W, Habisreuther T, Zeisberger M, Litzkendorf D, Surzhenko O, Kracunovska S, Prikhna T A, Oswald B, Kovalev L K, Canders W 2004 Supercond. Sci. Technol. 17 1185

    [14]

    Werfel F N, Floegel-Delor U, Rothfeld R, Goebel B, Wippich D, Riedel T 2005 Supercond. Sci. Technol. 18 S19

    [15]

    Oswald B, Best K J, Setzer M, Soll M, Gawalek W, Gutt A, Kovalev L, Krabbes G, Fisher L, Freyhardt H C 2005 Supercond. Sci. Technol. 18 S24

    [16]

    Dai J Q, Zhao Z X, Xiong J W 2003 Supercond. Sci. Technol. 16 815

    [17]

    Babu N H, Iida K, Shi Y, Cardwell D A 2005 Appl. Phys. Lett. 87 202506

    [18]

    Iida K, Babu N H, Shi Y, Cardwell D A 2005 Supercond. Sci. Technol. 18 1421

    [19]

    Iida K, Babu N H, Shi Y, Cardwell D A 2006 Supercond. Sci. Technol. 19 S478

    [20]

    Meslin S, Iida K, Babu N H, Cardwell D A, Noudem J G 2006 Supercond. Sci. Technol. 19 711

    [21]

    Noudem J G, Meslin S, Horvath D, Harnois C, Chateigner D, Ouladdiaf B, Eve S, Gomina M, Chaud X, Murakami M 2007 J. Am. Ceram. Soc. 90 2784

    [22]

    Li G Z, Yang W M 2010 Acta Phys. Sin. 59 5208 (in Chinese) [李国政、杨万民 2010 59 5208]

    [23]

    Varanasi C, Mcginn P J, Blackstead H A, Pullinga D B 1995 Appl. Phys. Lett. 67 1004

    [24]

    Feng Y, Zhou L, Wen J G, Koshizuka N, Sulpice A, Tholence J L, Vallier J C, Monceau P 1998 Physica C 297 75

    [25]

    Zheng H, Jiang M, Huang Y, Veal B W, Claus H 1998 Physica C 307 284

    [26]

    Nariki S, Sakai N, Murakami M, Hirabayashi I 2004 Physica C 412-414 557

    [27]

    Iida K, Babu N H, Withnell T D, Shi Y, Haindl S, Weber H W, Cardwell D A 2006 Physica C 445-448 277

    [28]

    Babu N H, Iida K, Shi Y, Cardwell D A 2006 Physica C 445-448 286

    [29]

    Li G Z, Yang W M, Tang Y L, Ma J 2010 Cryst. Res. Technol. 45 219

    [30]

    Murakami M, Sakai N, Higuchi T, Yoo S I 1996 Supercond. Sci. Technol. 9 1015

    [31]

    Chen S Y, Hsiao Y S, Chen C L, Yan D C, Chen I G, Wu M K 2008 Mater. Sci. Eng. B 151 31

    [32]

    Koblischka M R, Muralidhar M, Murakami M 1999 Mater. Sci. Eng. B 65 58

    [33]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [34]

    Hinai H, Nariki S, Seo S J, Sakai N, Murakami M, Otsuka M 2000 Supercond. Sci. Technol. 13 676

  • [1]

    Sha J J, Yao Z W, Yu J N, Yu G, Luo J H, Wen H H, Yang W L, Li S L 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军、姚仲文、郁金南、郁 刚、罗金汉、闻海虎、杨万里、李世亮 2000 49 1356]

    [2]

    Feng Y, Zhou L, Yang W M, Zhang C P, Wang J R, Yu Z M, Wu X Z 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍、汪京荣、于泽铭、吴晓祖 2000 49 146]

    [3]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿、姚 忻、李 刚 2006 55 844]

    [4]

    Zhang Y L, Yao X, Zhang H, Jin Y P 2005 Acta Phys. Sin. 54 3380 (in Chinese) [张玉龙、姚 忻、张 宏、金燕苹 2005 54 3380]

    [5]

    Xu C Y, Shi L, Zuo J, Pang W H, Zhang Y L 1996 Acta Phys. Sin. 45 893 (in Chinese) [许存义、石 磊、左 健、庞文华、张裕恒 1996 45 893]

    [6]

    Zhou Z J, Zhou Z W, Zhou L Y, Lin L, Li X G, Feng Q R 2004 Chin. Phys. 13 1957

    [7]

    Ding F Z, Lü X D, Gu H W, Li T, Cao J L 2009 Chin. Phys. B 18 1631

    [8]

    Shen C X, Shen X L, Lu W, Dong X L, Li Z C, Xiong J W, Zhou F 2008 Chin. Phys. B 17 1425

    [9]

    Shabna R, Sarun P M, Vinu S, Syamaprasad U 2009 Chin. Phys. B 18 4000

    [10]

    Babu N H, Lo W, Cardwell D A, Campbell A M 1999 Appl. Phys. Lett. 75 2981

    [11]

    Muralidhar M, Sakai N, Chikumoto N, Jirsa M, Machi T, Nishiyama M, Wu Y, Murakami M 2002 Phys. Rev. Lett. 89 237001

    [12]

    Shen X L, Li Z C, Shen C X, Lu W, Dong X L, Zhou F, Zhao Z X 2009 Chin. Phys. B 18 2893

    [13]

    Gawalek W, Habisreuther T, Zeisberger M, Litzkendorf D, Surzhenko O, Kracunovska S, Prikhna T A, Oswald B, Kovalev L K, Canders W 2004 Supercond. Sci. Technol. 17 1185

    [14]

    Werfel F N, Floegel-Delor U, Rothfeld R, Goebel B, Wippich D, Riedel T 2005 Supercond. Sci. Technol. 18 S19

    [15]

    Oswald B, Best K J, Setzer M, Soll M, Gawalek W, Gutt A, Kovalev L, Krabbes G, Fisher L, Freyhardt H C 2005 Supercond. Sci. Technol. 18 S24

    [16]

    Dai J Q, Zhao Z X, Xiong J W 2003 Supercond. Sci. Technol. 16 815

    [17]

    Babu N H, Iida K, Shi Y, Cardwell D A 2005 Appl. Phys. Lett. 87 202506

    [18]

    Iida K, Babu N H, Shi Y, Cardwell D A 2005 Supercond. Sci. Technol. 18 1421

    [19]

    Iida K, Babu N H, Shi Y, Cardwell D A 2006 Supercond. Sci. Technol. 19 S478

    [20]

    Meslin S, Iida K, Babu N H, Cardwell D A, Noudem J G 2006 Supercond. Sci. Technol. 19 711

    [21]

    Noudem J G, Meslin S, Horvath D, Harnois C, Chateigner D, Ouladdiaf B, Eve S, Gomina M, Chaud X, Murakami M 2007 J. Am. Ceram. Soc. 90 2784

    [22]

    Li G Z, Yang W M 2010 Acta Phys. Sin. 59 5208 (in Chinese) [李国政、杨万民 2010 59 5208]

    [23]

    Varanasi C, Mcginn P J, Blackstead H A, Pullinga D B 1995 Appl. Phys. Lett. 67 1004

    [24]

    Feng Y, Zhou L, Wen J G, Koshizuka N, Sulpice A, Tholence J L, Vallier J C, Monceau P 1998 Physica C 297 75

    [25]

    Zheng H, Jiang M, Huang Y, Veal B W, Claus H 1998 Physica C 307 284

    [26]

    Nariki S, Sakai N, Murakami M, Hirabayashi I 2004 Physica C 412-414 557

    [27]

    Iida K, Babu N H, Withnell T D, Shi Y, Haindl S, Weber H W, Cardwell D A 2006 Physica C 445-448 277

    [28]

    Babu N H, Iida K, Shi Y, Cardwell D A 2006 Physica C 445-448 286

    [29]

    Li G Z, Yang W M, Tang Y L, Ma J 2010 Cryst. Res. Technol. 45 219

    [30]

    Murakami M, Sakai N, Higuchi T, Yoo S I 1996 Supercond. Sci. Technol. 9 1015

    [31]

    Chen S Y, Hsiao Y S, Chen C L, Yan D C, Chen I G, Wu M K 2008 Mater. Sci. Eng. B 151 31

    [32]

    Koblischka M R, Muralidhar M, Murakami M 1999 Mater. Sci. Eng. B 65 58

    [33]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [34]

    Hinai H, Nariki S, Seo S J, Sakai N, Murakami M, Otsuka M 2000 Supercond. Sci. Technol. 13 676

  • [1] 李国政, 王妙. 纳米CeO2掺杂的YBCO超导块材的制备及其性能.  , 2024, 73(19): 197402. doi: 10.7498/aps.73.20240832
    [2] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能.  , 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [3] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响.  , 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [4] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二).  , 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [5] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响.  , 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [6] 胡强, 贾晓鹏, 李尚升, 宿太超, 胡美华, 房超, 张跃文, 李刚, 刘海强, 马红安. 高压熔渗生长法制备金刚石聚晶中碳的转化机制研究.  , 2016, 65(6): 068101. doi: 10.7498/aps.65.068101
    [7] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响.  , 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [8] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [9] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响.  , 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [10] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [11] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究.  , 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [12] 李国政, 杨万民. 用一种新的装配方式制备单畴GdBCO超导块材.  , 2011, 60(3): 037401. doi: 10.7498/aps.60.037401
    [13] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长.  , 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [14] 李国政, 杨万民. 用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材.  , 2010, 59(7): 5028-5034. doi: 10.7498/aps.59.5028
    [15] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长.  , 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [16] 杨吉军, 徐可为. 多晶薄膜表面粗化与生长方式转变.  , 2007, 56(2): 1110-1115. doi: 10.7498/aps.56.1110
    [17] 牟威圩, 许小亮. 感染生长模型的逾渗模拟.  , 2006, 55(6): 2871-2876. doi: 10.7498/aps.55.2871
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长.  , 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟.  , 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟.  , 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  8651
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-29
  • 修回日期:  2010-07-16
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map