-
以GEANT4为基础采用蒙特卡罗方法对能量为1 MeV的中子在锆 材料中的输运过程进行了模拟分析. 首先计算得出: 反冲核的能量主要分布在1 keV和15 keV之间, 中子和靶核发生两次弹性碰撞的平均空间距离为29.47 mm. 由于中子和靶核在发生连续两次弹性碰撞过程中产生的两个反冲核能量较低, 它们的空间距离又比较大, 由此可以推测出: 由初级离位原子产生的后续级联碰撞可以看做是一系列独立的子级联碰撞过程, 同时也计算了中子在靶材的不同深度区域内产生的反冲核数目和平均能量. 其次, 利用蒙卡方法计算得到的结果, 采用分子动力学方法, 分别计算了五种不同能量下的初级离位原子产生的级联碰撞情况, 给出了初级离位原子的能量与其产生的次级离位原子数目之间的关系以 及不同能量下的初级离位原子产生的损伤区域范围等情况, 通过蒙特卡罗方法和分子动力学方法的结合, 给出了能量为1 MeV的中子在锆材料中产生的初级辐照损伤分布图像.Based on the Geant4 program-the package for simulating particle transportation in materials, simulations of the irradiation by neutrons with 1 MeV energy in zirconium were conducted The two adjacent elastic collisions between injected neutron and target atoms produce numerous primary knock-on atoms (PKA). It is found that the average distance of adjacent collisions is 29.47 mm, and the kinetic energy of most PKAs ranges from 1 keV to 15 keV. The damaged area induced by the PKAs is in nanometer scale, which is far less than the distance between the two PKAs. According to the fact that, the subsequent cascade collisions caused by the two PKAs can be considered as a set of independent processes, it is reasonable to study the cascade collisions of the PKAs by means of molecular dynamics method. The cascade collision progress of PKAs with different energies was performed, and the number of interstitial atoms and the size of the damaged regions in the material were extracted. Through the combination of Monte Carlo method and molecular dynamics simulation, a complete physical picture of the primary damage caused by the 1 MeV neutrons in the zirconium was obtained.
-
Keywords:
- radiation damage /
- cascade collision /
- Monte Carlo simulation /
- molecular dynamics
[1] Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 60 052501]
[2] Gary W S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) p12
[3] Office of Basic Energy Sciences 2006 Basic Research Needs for Advanced Nuclear Energy Systems (U.S: Department Of Energy)
[4] Samaras M, Victoria M, Hoffelner W 2009 J. Nucl. Mater 392 286
[5] Bacon J D, Calder F A, Gao F 1997 J. Nucl. Mater. 251 1
[6] Trachenko K, Zarkadoula E, Todorov T I, Dove T M, Dunstan J D, Nordlund K 2012 Nuclear Instruments and Methods in Physics Research B 277 6
[7] Souidi A, Hou M, Becquart S C, Malerba L, Domain C, Stoller E R 2011 J. Nucl. Mater. 419 122
[8] Maire M, Wright D H, Urban L 2004 GEANT4 Physics Reference Manual
[9] Mendelev M I, Ackland G J 2007 Phil. Mag. Lett. 87 349
[10] Dierckx R 1987 J. Nucl. Mater. 144 214
[11] Yu G, Li X Q, Sha J J, Yu J N, Xu S Y, Cai C H 2004 Chinese Jounal of Nuclear Science and Engineering 24 139 (in Chinese) [郁刚, 李晓强, 沙建军, 郁金南, 许淑艳, 蔡崇海 2004 核科学与工程 24 139]
[12] Gao F, Bacon J D, Flewitt J E P, Lewis A T 1997 J. Nucl. Mater. 249 77
[13] Yu J N 2007 Materials Irradiation effect (Beijing: Chemical Industry Press) (in Chinese) [郁金南 2007 材料辐照效应 (北京: 化学工业出版社) 第125页]
[14] Bacon J D, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1
[15] Heinisch H L, Singh B N 1992 Phil. Mag. A 67 407
[16] Takahashi A, Hirose K, Soneda N, Kikuchi M 2006 Key Engineering Materials 306 923
[17] Stoller E R 2000 Nuclear Engineering and Design 195 129
[18] Gao F, Bacon D J, Howe L M, So C B 2001 J. Nucl. Mater. 294 288
-
[1] Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 60 052501]
[2] Gary W S 2007 Fundamentals of Radiation Materials Science (Berlin: Springer) p12
[3] Office of Basic Energy Sciences 2006 Basic Research Needs for Advanced Nuclear Energy Systems (U.S: Department Of Energy)
[4] Samaras M, Victoria M, Hoffelner W 2009 J. Nucl. Mater 392 286
[5] Bacon J D, Calder F A, Gao F 1997 J. Nucl. Mater. 251 1
[6] Trachenko K, Zarkadoula E, Todorov T I, Dove T M, Dunstan J D, Nordlund K 2012 Nuclear Instruments and Methods in Physics Research B 277 6
[7] Souidi A, Hou M, Becquart S C, Malerba L, Domain C, Stoller E R 2011 J. Nucl. Mater. 419 122
[8] Maire M, Wright D H, Urban L 2004 GEANT4 Physics Reference Manual
[9] Mendelev M I, Ackland G J 2007 Phil. Mag. Lett. 87 349
[10] Dierckx R 1987 J. Nucl. Mater. 144 214
[11] Yu G, Li X Q, Sha J J, Yu J N, Xu S Y, Cai C H 2004 Chinese Jounal of Nuclear Science and Engineering 24 139 (in Chinese) [郁刚, 李晓强, 沙建军, 郁金南, 许淑艳, 蔡崇海 2004 核科学与工程 24 139]
[12] Gao F, Bacon J D, Flewitt J E P, Lewis A T 1997 J. Nucl. Mater. 249 77
[13] Yu J N 2007 Materials Irradiation effect (Beijing: Chemical Industry Press) (in Chinese) [郁金南 2007 材料辐照效应 (北京: 化学工业出版社) 第125页]
[14] Bacon J D, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1
[15] Heinisch H L, Singh B N 1992 Phil. Mag. A 67 407
[16] Takahashi A, Hirose K, Soneda N, Kikuchi M 2006 Key Engineering Materials 306 923
[17] Stoller E R 2000 Nuclear Engineering and Design 195 129
[18] Gao F, Bacon D J, Howe L M, So C B 2001 J. Nucl. Mater. 294 288
计量
- 文章访问数: 6646
- PDF下载量: 1083
- 被引次数: 0