Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds

Su Xian-Li Tang Xin-Feng Li Han

Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds

Su Xian-Li, Tang Xin-Feng, Li Han
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The single-phase InSb compounds have been prepared by novel melt spinning (MS) technique combined with spark plasma sintering (SPS) method, and the effects of melt spinning process on their microstructure and thermoelectric transport properties have been investigated. The results show that the free surface of ribbon obtained by MS consists of cubic grains with the size of 03—20 μm, and the contact surface of ribbon obtained by MS amorphous-like phases or finer nanostructures have formed, and after SPS the highly dense bulk material with lots of fine layered nanostructure has been obtained of about 40 nm in dimensions. By comparing the bulk InSb material prepared by melting method combined with SPS (Melt+SPS sample) with the bulk InSb material obtained by melting method combined with MS and SPS (Melt+MS+SPS sample), we see that the MS process leads to a slight decrease in electrical conductivity, and an obvious increase in Seebeck coefficient, as well as a remarkable decrease in thermal conductivity and lattice thermal conductivity for bulk InSb in the testing temperature range of 300—700 K. At 300 K and 700 K, the lattice thermal conductivities of Melt+SPS sample and Melt+MS+SPS sample decrease by the scopes of 106% and 1664%, respectively. As a result, the maximum dimensionless figure of merit ZT of 0.49 is obtained at 700 K for the Melt+MS+SPS sample. Compared with that of Melt+SPS sample, it is increased by 29% at the same temperature.
      PACS:
    [1]

    [1]Ioffe F 1961 Semiconductors Thermoelements and Thermoelectric Cooling (New York: Interscience)

    [2]

    [2]Rowe D W, Bhandari C M 1983 Modern Thermoelectricity (London: Holt, Rinechalt and Wiston)

    [3]

    [3]Tritt T M 1999 Science 283 804

    [4]

    [4]Bowers R, Ure R W, Bauerle J E, Cornish A J 1959 J Appl. Phys.30 930

    [5]

    [5]Yamaguchi S, Nagawa Y, Kaiwa N, Yamamoto A 2005 Appl. Phys. Lett. 87 201902

    [6]

    [6]Tsaur S C, Kou S 2007 J. Cryst. Growth. 307 268

    [7]

    [7]Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [8]

    [8]Mingo N 2004 Appl. Phys. Lett. 84 2562

    [9]

    [9]Tang X F, Xie W J, Li H, Zhao W Y, Zhang Q J 2007 Appl. Phys. Lett. 90 012102

    [10]

    ]Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 1021111

    [11]

    ]Li H, Tang X F, Zhang Q J, Uher C 2008 Appl. Phys. Lett. 93 252109

    [12]

    ]Li H, Tang X F, Su X L, Zhang Q J, Uher C 2008 Appl. Phys. Lett. 92 202114

    [13]

    ]Cao W Q, Deng S K, Tang X F, Li P 2009 Acta Phys. Sin. 58 0612 (in Chinese) [曹卫强、邓书康、唐新峰、李鹏 2009 58 0612]

    [14]

    ]Rode D L 1971 Phys. Rev. B 3 3287

    [15]

    ]Chen L D, Huang X Y, Zhou M, Shi X , Zhang W B 2006 J. Appl. Phys. 99 064305

    [16]

    ]Yu B L, Qi Q, Tang X F, Zhang Q J 2005 Acta Phys. Sin. 54 5763 (in Chinese) [余柏林、祁琼、唐新峰、张清杰 2005 54 5763]

    [17]

    ]Liu W S, Zhang B P, Li J F, Zhang H L, Zhao L D 2008 Acta Phys. Sin. 57 3791 (in Chinese) [刘玮书、张波萍、李敬锋、张海龙、赵立东 2008 57 3791]

  • [1]

    [1]Ioffe F 1961 Semiconductors Thermoelements and Thermoelectric Cooling (New York: Interscience)

    [2]

    [2]Rowe D W, Bhandari C M 1983 Modern Thermoelectricity (London: Holt, Rinechalt and Wiston)

    [3]

    [3]Tritt T M 1999 Science 283 804

    [4]

    [4]Bowers R, Ure R W, Bauerle J E, Cornish A J 1959 J Appl. Phys.30 930

    [5]

    [5]Yamaguchi S, Nagawa Y, Kaiwa N, Yamamoto A 2005 Appl. Phys. Lett. 87 201902

    [6]

    [6]Tsaur S C, Kou S 2007 J. Cryst. Growth. 307 268

    [7]

    [7]Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [8]

    [8]Mingo N 2004 Appl. Phys. Lett. 84 2562

    [9]

    [9]Tang X F, Xie W J, Li H, Zhao W Y, Zhang Q J 2007 Appl. Phys. Lett. 90 012102

    [10]

    ]Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 1021111

    [11]

    ]Li H, Tang X F, Zhang Q J, Uher C 2008 Appl. Phys. Lett. 93 252109

    [12]

    ]Li H, Tang X F, Su X L, Zhang Q J, Uher C 2008 Appl. Phys. Lett. 92 202114

    [13]

    ]Cao W Q, Deng S K, Tang X F, Li P 2009 Acta Phys. Sin. 58 0612 (in Chinese) [曹卫强、邓书康、唐新峰、李鹏 2009 58 0612]

    [14]

    ]Rode D L 1971 Phys. Rev. B 3 3287

    [15]

    ]Chen L D, Huang X Y, Zhou M, Shi X , Zhang W B 2006 J. Appl. Phys. 99 064305

    [16]

    ]Yu B L, Qi Q, Tang X F, Zhang Q J 2005 Acta Phys. Sin. 54 5763 (in Chinese) [余柏林、祁琼、唐新峰、张清杰 2005 54 5763]

    [17]

    ]Liu W S, Zhang B P, Li J F, Zhang H L, Zhao L D 2008 Acta Phys. Sin. 57 3791 (in Chinese) [刘玮书、张波萍、李敬锋、张海龙、赵立东 2008 57 3791]

Metrics
  • Abstract views:  10781
  • PDF Downloads:  1464
Publishing process
  • Received Date:  23 June 2009
  • Accepted Date:  27 August 2009
  • Published Online:  05 February 2010

/

返回文章
返回
Baidu
map