搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肖特基结多数载流子积累新型绝缘栅双极晶体管

段宝兴 刘雨林 唐春萍 杨银堂

引用本文:
Citation:

肖特基结多数载流子积累新型绝缘栅双极晶体管

段宝兴, 刘雨林, 唐春萍, 杨银堂

Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction

Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang
PDF
HTML
导出引用
  • 绝缘栅双极晶体管(insulated gate bipolar transistor, IGBT)是现代功率半导体器件的核心, 因其良好的电学特性得到了广泛的应用. 本文提出了一种具有肖特基结接触的栅半导体层新型多数载流子积累模式IGBT, 并对其进行特性研究和仿真分析. 当新型IGBT处于导通状态, 栅极施加正向偏压, 由于肖特基势垒二极管极低的正向导通压降, 使得栅半导体层的电压几乎等于栅极电压, 从而能够在漂移区中积累大量的多数载流子电子. 除了现有的电子外, 这些积累的电子增大了漂移区的电导率, 从而显著降低了正向导通压降. 因此, 打破了传统IGBT正向导通压降受漂移区掺杂浓度的限制. 轻掺杂的漂移区可以使新型IGBT具有较高的击穿电压, 同时减小了关断过程中器件内部耗尽层电容, 因此整体米勒电容减小, 提升了关断速度, 减小了关断时间和关断损耗. 分析结果表明, 600 V级别的击穿电压时, 新型IGBT的正向导通压降, 关断损耗和关断时间相比常规IGBT分别降低了46.2%, 52.5%, 30%, 打破了IGBT中正向导通压降和关断损耗之间的矛盾. 此外, 新型IGBT具有更高的抗闩锁能力和更大的正偏安全工作区. 新型结构的提出满足了未来IGBT器件性能的发展要求, 对于功率半导体器件领域具有重大指导意义.
    Insulated gate bipolar transistor (IGBT) is the core of modern power semiconductor device, and has been widely used due to its excellent electrical characteristics. A novel majority carrier accumulation mode IGBT with Schottky junction contact gate semiconductor layer (AC-SCG IGBT) is proposed and investigated by TCAD simulation in this article. When the AC-SCG IGBT is in the on-state, a forward bias is applied to the gate. Due to the very low forward voltage drop (VF) of the Schottky barrier diode, the potential of the gate semiconductor layer is almost equal to the gate potential, which can accumulate a large number of majority carrier electrons in the drift region. In addition to the electrons existing, these accumulated electrons increase the conductivity of the drift region, thus significantly reducing VF. Therefore, the doping concentration of the drift region is not limited by VF. The lightly doped drift region can make AC-SCG IGBT have a higher breakdown voltage (BV). Moreover, it also reduces the barrier capacitance in the turn-off process, thus the overall Miller capacitance is small, which can quickly turn off and reduce the turn-off time (Toff) and turn-off loss (Eoff). The simulation results indicate that at the BV of 600 V, the VF of 0.84 V for the proposed AC-SCG IGBT is reduced by 46.2% compared with that for the conventional IGBT (VF of 1.56 V). The Eoff of the AC-SCG IGBT (0.77 mJ/cm2) is reduced by 52.5% compared with that for the conventional IGBT (1.62 mJ/cm2), and the Toff (155.8–222.7 ns) is reduced by 30%. The contradiction between VF and Eoff is eliminated. In addition, the proposed AC-SCG IGBT has a better anti-latch-up capability and is coupled with its higher BV, so it has a larger forward biased safe operating area (FBSOA). The proposed novel structure meets the development requirements for future IGBT device performance, and has great significance for guiding the development of the power semiconductor device field.
      通信作者: 段宝兴, bxduan@163.com
    • 基金项目: 陕西省杰出青年科学基金(批准号: 2018JC-017)资助的课题.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017).
    [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • 图 1  两种器件结构示意图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Fig. 1.  Schematic cross sections of the two devices: (a) Conventional IGBT structure; (b) AC-SCG IGBT structure.

    图 2  AC-SCG IGBT的工艺流程图 (a)外延; (b)深沟槽刻蚀; (c) SiO2生长; (d)外延回填; (e)离子注入; (f)背面减薄和金属化

    Fig. 2.  Process flow for AC-SCG IGBT: (a) Epitaxy; (b) deep trench etching; (c) performing SiO2 growth; (d) epitaxial backfilling; (e) ion implantation; (f) back thinning and metallization.

    图 3  正栅极电压下AC-SCG IGBT积累层的截面示意图及栅半导体层的电位分布

    Fig. 3.  Schematic cross sections of AC-SCG IGBT accumulation layer and potential distributions of the gate semiconductor layer under the positive gate voltage.

    图 4  两种器件的BV和VFND变化的曲线图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Fig. 4.  BV and VF as a function of ND of the two devices: (a) Conventional IGBT; (b) AC-SCG IGBT.

    图 5  两种器件在击穿时的垂直电场分布 (a)两种器件沿线AA'的电场分布; (b) AC-SCG IGBT沿线BB'的电场分布

    Fig. 5.  Vertical electric field distributions of the two devices at BV: (a) Electric field distributions along the line AA' for the two devices; (b) electric field distribution along the line BB' for AC-SCG IGBT.

    图 6  AC-SCG IGBT栅氧化层两侧的电势分布

    Fig. 6.  Potential distribution on both sides of AC-SCG IGBT gate oxide.

    图 7  两种器件在不同VG下的输出特性

    Fig. 7.  Variation of output characteristics for the two devices under VG.

    图 8  两种器件在VG = 10 V下的饱和特性

    Fig. 8.  Saturation characteristics for the two devices under VG = 10 V.

    图 9  AC-SCG IGBT在不同TOX下的输出特性

    Fig. 9.  Variation of output characteristics for the AC-SCG IGBT under TOX.

    图 10  开关电路与关断特性图 (a)带感性负载的IGBT开关电路图; (b)两种器件的关断特性曲线

    Fig. 10.  Switching circuit and turn-off characteristics diagram: (a) Switching circuit with inductive load for IGBT; (b) turn-off characteristics for the two devices.

    图 11  两种器件的米勒电容

    Fig. 11.  CGC as a function of VCE of the two devices.

    图 12  两种器件VFEoff的折中曲线图

    Fig. 12.  Trade-off curves between VF and Eoff for the two devices.

    图 13  两种器件的FBSOA

    Fig. 13.  FBSOA of the two devices.

    表 1  常规IGBT和AC-SCG IGBT的关键参数和电学特性值

    Table 1.  Key parameters and electrical characteristic values of the conventional IGBT and AC-SCG IGBT.

    名称参数常规IGBTAC-SCG IGBT
    漂移区长度LD/μm2828
    器件宽度W/μm3.13.1
    氧化层厚度TOX/μm0.10.1
    漂移区掺杂浓度ND/cm–310141012
    Nside区掺杂浓度Nside/cm–31012
    击穿电压BV/V612629
    正向导通压降VF/V1.560.84
    关断时间Toff/ns222.7155.8
    关断损耗Eoff/(mJ·cm–2)1.620.77
    下载: 导出CSV
    Baidu
  • [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • [1] 段宝兴, 王佳森, 唐春萍, 杨银堂. 新型载流子积累的逆导型横向绝缘栅双极晶体管.  , 2024, 73(15): 157301. doi: 10.7498/aps.73.20240572
    [2] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制.  , 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [3] 郭春生, 丁嫣, 姜舶洋, 廖之恒, 苏雅, 冯士维. 高效在线测量加速实验中双极晶体管结温方法的研究.  , 2017, 66(22): 224703. doi: 10.7498/aps.66.224703
    [4] 谭骥, 朱阳军, 卢烁今, 田晓丽, 滕渊, 杨飞, 张广银, 沈千行. 绝缘栅双极型晶体管感性负载关断下电压变化率的建模与仿真研究.  , 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [5] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究.  , 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [6] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理.  , 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [7] 任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾. 基极注入强电磁脉冲对双极晶体管的损伤效应和机理.  , 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [8] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究.  , 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [9] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展.  , 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [10] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响.  , 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [11] 马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌. 双极晶体管微波损伤效应与机理.  , 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [12] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离.  , 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [13] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺.  , 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [14] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响.  , 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] 柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋. 双极晶体管在强电磁脉冲作用下的损伤效应与机理.  , 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [16] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究.  , 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [17] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗.  , 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [18] 吴凡, 王太宏. 单电子晶体管通断图及其分析.  , 2002, 51(12): 2829-2835. doi: 10.7498/aps.51.2829
    [19] 张兴宏, 胡雨生, 吴 杰, 程知群, 夏冠群, 徐元森, 陈张海, 桂永胜, 褚君浩. 深能级对AlGaInP/GaAs异质结双极晶体管性能的影响.  , 1999, 48(3): 556-560. doi: 10.7498/aps.48.556
    [20] 王晓辉, 金新, 姚希贤. 大涨落作用下损耗模式RF-SQUID磁通跃迁性质的研究.  , 1991, 40(10): 1689-1693. doi: 10.7498/aps.40.1689
计量
  • 文章访问数:  1970
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-26
  • 上网日期:  2024-01-08
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map