搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制

缑石龙 马武英 姚志斌 何宝平 盛江坤 薛院院 潘琛

引用本文:
Citation:

基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制

缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛

Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment

Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen
PDF
HTML
导出引用
  • 为了研究氢气与辐射感生产物之间的作用关系, 以栅控横向PNP双极晶体管为研究对象, 分别开展了氢气氛围中浸泡后的辐照实验和辐照后氢气氛围中退火实验, 结果表明: 氢气进入双极晶体管后会使其辐照损伤增强, 并且未浸泡器件辐照后在氢气中退火也会使晶体管辐射损伤增强. 基于栅扫描法分离的辐射感生产物结果表明, 氢气进入晶体管会使得界面陷阱增多, 氧化物陷阱电荷减少, 主要原因是氢气进入氧化层会与辐射产生的氧化物陷阱电荷发生反应, 产生氢离子, 从而使界面陷阱增多. 基于该反应机理, 建立了包含氢气反应和氢离子产生机制的低剂量率辐照损伤增强效应数值模型, 模型仿真得到的界面陷阱及氧化物陷阱电荷面密度数量级和变化趋势均与实验结果一致, 进一步验证了氢气在双极器件中辐照反应机理的正确性, 为双极器件辐照损伤机制研究和在氢氛围中浸泡作为低剂量率辐射损伤增强效应加速评估方法的建立提供了参考和理论支撑.
    Hydrogen plays a crucial role in realizing modern silicon devices. Molecular hydrogen may be found in processes of integrated circuit fabrication and packaging, such as wafer cleaning procedure, film depositions, high- and low-temperature anneal and die attachment by forming gas. It has been shown that hydrogen has strong effects on the total dose and dose rate response to bipolar devices. In order to study the relationship between hydrogen and radiation-induced products, we preform two experiments by using gate-lateral PNP transistors. In the first experiment, one set of devices is soaked in 100% hydrogen gas for 60 h and another set is not soaked, they are together irradiated at 5 rad(Si)/s to a total dose of 50 krad(Si). In the second experiment, devices are irradiated at 50 rad(Si)/s to 100 krad(Si), and then one group is annealed in 100% hydrogen gas and the other is annealed in the air for 40 h at the same temperature. The results show that the damage to devices which are soaked in hydrogen before irradiation is stronger than the devices that are not soaked, the anneal characteristics of devices in hydrogen gas are also changed more greatly than in the air. So the hydrogen can enhance the radiation and anneal damage to bipolar transistors. Using the gate-sweep technique, the radiation-induced products are separated and show that the hydrogen that enters into the transistor will cause the interface traps to increase and oxide trapped charge to decrease. The main reason is that the hydrogen can react with the oxide trapped charge to produce protons which can transport to the Si/SiO2 interface, and then react with H-passivized bond to create interface trap. Based on the reaction mechanism presented in our work, a numerical model of enhanced low dose rate sensitivity including molecular hydrogen reaction and proton generation mechanism is established. The simulation results for the density of interface traps and oxide trapped charge show a trend consistent with the experimental data, which verifies the correctness of the damage mechanism. This research provides not only the basis of the study of damage mechanism of bipolar devices, but also the powerful support for hydrogen soaking irradiation acceleration method.
      通信作者: 姚志斌, yaozhibin@nint.ac.cn
    • 基金项目: 强脉冲辐射模拟与效应国家重点实验室(批准号: SKLIPR1802Z)资助的课题
      Corresponding author: Yao Zhi-Bin, yaozhibin@nint.ac.cn
    • Funds: Project supported by the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1802Z)
    [1]

    Seiler J E, Pease, Platteter D G, Maher, Dunham G W, Pease R L, Maher M C, Shaneyfelt M R 2004 IEEE Radiation Effects Data Workshop Atlanta, USA, July 22, 2004 p42

    [2]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G L, Fleetwood D M, Dodd P E, Reber C A 2002 IEEE Trans. Nucl. Sci. 49 3171Google Scholar

    [3]

    Shaneyfelt M R, Pease R L, Maher M C, Schwank J R, Gupta S, Dodd P E, Riewe L C 2003 IEEE Trans. Nucl. Sci. 50 1784Google Scholar

    [4]

    Adell P C, Rax B, Esqueda I S, Barnaby H J 2015 IEEE Trans. Nucl. Sci. 62 2476Google Scholar

    [5]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

    [6]

    Pease R L, Platteter D G, Dunham G W, Seiler J E, Adell P C, Barnaby H J, Chen J 2007 IEEE Trans. Nucl. Sci. 54 2168Google Scholar

    [7]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [8]

    Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347Google Scholar

    [9]

    Pease R L, Adell P C, Rax B, McClure S, Barnaby H J, Kruckmeyer K, Triggs B 2010 IEEE Trans. Nucl. Sci. 57 3419Google Scholar

    [10]

    赵金宇, 杨剑群, 董磊, 李兴冀 2019 68 068501Google Scholar

    Zhao J Y, Yang J Q, Dong L, Li X J 2019 Acta Phys. Sin. 68 068501Google Scholar

    [11]

    Adell P C, Pease R L, Barnaby H J, Rax B, Chen X J, McClure S S 2009 IEEE Trans. Nucl. Sci. 56 3326Google Scholar

    [12]

    Chen X J, Barnaby H J, Adell P, Pease, R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [13]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar

    [14]

    Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M, Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039Google Scholar

    [15]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [16]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar

    [17]

    席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103Google Scholar

    Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103Google Scholar

    [18]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [19]

    姚志斌 2014 博士学位论文 (西安: 西北核技术研究所)

    Yao Z B 2014 Ph. D. Dissertation (Xi’an: Northwest Institude of Nuclear Technology) (in Chinese)

    [20]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2001 Phys. Rev. Lett. 87 165501Google Scholar

    [21]

    姚志斌, 陈伟, 何宝平, 马武英, 盛江坤, 刘敏波, 王祖军, 金军山, 张帅 2018 原子能科学技术 52 1144Google Scholar

    Yao Z B, Chen W, He B P, Ma W Y, Sheng J K, Liu M B, Wang Z J, Jin J S, Zhang S 2018 Atom. Energ. Sci. Technol. 52 1144Google Scholar

    [22]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

  • 图 1  栅控横向PNP双极晶体管二维结构示意图

    Fig. 1.  Two-dimensional cross section of the gated-lateral PNP transistors.

    图 2  氢气浸泡后与未浸泡条件下归一化的晶体管放大倍数随辐照总剂量的变化

    Fig. 2.  Comparison of β/β0 of transistors with/without soaking in 100% H2 under γ-ray irradiated.

    图 3  氢气浸泡后与未浸泡条件下, 不同总剂量时的晶体管栅扫描曲线

    Fig. 3.  Gate sweep results from experiments with/without soaking in 100% H2 under γ-ray irradiated.

    图 4  氢气浸泡后与未浸泡条件下辐射感生产物面密度随总剂量的变化 (a)界面陷阱; (b)氧化物陷阱电荷

    Fig. 4.  Radiation-induced increases in (a) interface traps and (b) oxide trapped charge with/without soaking in 100% H2 under γ-ray irradiated.

    图 5  辐照前、辐照后、以及不同条件下退火后的晶体管栅扫描曲线 (a) 空气中退火; (b) 氢气中退火

    Fig. 5.  Gate sweep results of pre-irradiation, after-irradiation and annealing: (a) In air; (b) in H2.

    图 6  辐射感生产物随总剂量和不同条件下退火时间的变化 (a)界面陷阱; (b)氧化物陷阱电荷

    Fig. 6.  Radiation-induced increases in (a) interface traps and (b) oxide trapped charge under annealing in air or 100% H2 for 40 hours.

    图 7  氢气氛围中浸泡双极器件损伤增强机理示意图

    Fig. 7.  Schematic diagram of the damage mechansim of bipolar transistors in the hydrogen environment.

    图 8  仿真得到的不同氢气浓度下辐照感生面密度随总剂量变化 (a)界面陷阱; (b)氧化物陷阱电荷

    Fig. 8.  Radiation-induced increases in (a) interface traps and (b) oxide trapped charge with different H2 density by simulation.

    Baidu
  • [1]

    Seiler J E, Pease, Platteter D G, Maher, Dunham G W, Pease R L, Maher M C, Shaneyfelt M R 2004 IEEE Radiation Effects Data Workshop Atlanta, USA, July 22, 2004 p42

    [2]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G L, Fleetwood D M, Dodd P E, Reber C A 2002 IEEE Trans. Nucl. Sci. 49 3171Google Scholar

    [3]

    Shaneyfelt M R, Pease R L, Maher M C, Schwank J R, Gupta S, Dodd P E, Riewe L C 2003 IEEE Trans. Nucl. Sci. 50 1784Google Scholar

    [4]

    Adell P C, Rax B, Esqueda I S, Barnaby H J 2015 IEEE Trans. Nucl. Sci. 62 2476Google Scholar

    [5]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

    [6]

    Pease R L, Platteter D G, Dunham G W, Seiler J E, Adell P C, Barnaby H J, Chen J 2007 IEEE Trans. Nucl. Sci. 54 2168Google Scholar

    [7]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [8]

    Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347Google Scholar

    [9]

    Pease R L, Adell P C, Rax B, McClure S, Barnaby H J, Kruckmeyer K, Triggs B 2010 IEEE Trans. Nucl. Sci. 57 3419Google Scholar

    [10]

    赵金宇, 杨剑群, 董磊, 李兴冀 2019 68 068501Google Scholar

    Zhao J Y, Yang J Q, Dong L, Li X J 2019 Acta Phys. Sin. 68 068501Google Scholar

    [11]

    Adell P C, Pease R L, Barnaby H J, Rax B, Chen X J, McClure S S 2009 IEEE Trans. Nucl. Sci. 56 3326Google Scholar

    [12]

    Chen X J, Barnaby H J, Adell P, Pease, R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [13]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar

    [14]

    Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M, Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039Google Scholar

    [15]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [16]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar

    [17]

    席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103Google Scholar

    Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103Google Scholar

    [18]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [19]

    姚志斌 2014 博士学位论文 (西安: 西北核技术研究所)

    Yao Z B 2014 Ph. D. Dissertation (Xi’an: Northwest Institude of Nuclear Technology) (in Chinese)

    [20]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2001 Phys. Rev. Lett. 87 165501Google Scholar

    [21]

    姚志斌, 陈伟, 何宝平, 马武英, 盛江坤, 刘敏波, 王祖军, 金军山, 张帅 2018 原子能科学技术 52 1144Google Scholar

    Yao Z B, Chen W, He B P, Ma W Y, Sheng J K, Liu M B, Wang Z J, Jin J S, Zhang S 2018 Atom. Energ. Sci. Technol. 52 1144Google Scholar

    [22]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

  • [1] 赵金宇, 杨剑群, 董磊, 李兴冀. 氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析.  , 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [2] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理.  , 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [3] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇. 典型模拟电路低剂量率辐照损伤增强效应的研究与评估.  , 2018, 67(9): 096101. doi: 10.7498/aps.67.20180027
    [4] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究.  , 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [5] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [6] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究.  , 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [7] 陈海峰. 反向衬底偏压下纳米N沟道金属氧化物半导体场效应晶体管中栅调制界面产生电流特性研究.  , 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [8] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析.  , 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [9] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离.  , 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [10] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响.  , 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [11] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究.  , 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [12] 孙鹏, 杜磊, 陈文豪, 何亮. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管潜在缺陷退化模型.  , 2012, 61(6): 067801. doi: 10.7498/aps.61.067801
    [13] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究.  , 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [14] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究.  , 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [15] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究.  , 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [16] 谭开洲, 胡刚毅, 杨谟华, 徐世六, 张正璠, 刘玉奎, 何开全, 钟 怡. 一种N沟VDMOS电离辐射界面陷阱电流传导性研究.  , 2008, 57(3): 1872-1877. doi: 10.7498/aps.57.1872
    [17] 李瑞珉, 杜 磊, 庄奕琪, 包军林. MOSFET 辐照诱生界面陷阱形成过程的1/f噪声研究.  , 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [18] 李忠贺, 刘红侠, 郝 跃. 超深亚微米PMOS器件的NBTI退化机理.  , 2006, 55(2): 820-824. doi: 10.7498/aps.55.820
    [19] 晁明举, 丁 佩, 张红瑞, 郭茂田, 梁二军. 氢气与氮气对硼碳氮纳米管生长的影响.  , 2004, 53(3): 936-941. doi: 10.7498/aps.53.936
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应.  , 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  4226
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-03-15
  • 上网日期:  2021-07-29
  • 刊出日期:  2021-08-05

/

返回文章
返回
Baidu
map