-
为了研究氢气与辐射感生产物之间的作用关系, 以栅控横向PNP双极晶体管为研究对象, 分别开展了氢气氛围中浸泡后的辐照实验和辐照后氢气氛围中退火实验, 结果表明: 氢气进入双极晶体管后会使其辐照损伤增强, 并且未浸泡器件辐照后在氢气中退火也会使晶体管辐射损伤增强. 基于栅扫描法分离的辐射感生产物结果表明, 氢气进入晶体管会使得界面陷阱增多, 氧化物陷阱电荷减少, 主要原因是氢气进入氧化层会与辐射产生的氧化物陷阱电荷发生反应, 产生氢离子, 从而使界面陷阱增多. 基于该反应机理, 建立了包含氢气反应和氢离子产生机制的低剂量率辐照损伤增强效应数值模型, 模型仿真得到的界面陷阱及氧化物陷阱电荷面密度数量级和变化趋势均与实验结果一致, 进一步验证了氢气在双极器件中辐照反应机理的正确性, 为双极器件辐照损伤机制研究和在氢氛围中浸泡作为低剂量率辐射损伤增强效应加速评估方法的建立提供了参考和理论支撑.
-
关键词:
- 栅控晶体管 /
- 氢气 /
- 低剂量率辐照损伤增强效应 /
- 界面陷阱 /
- 氧化物陷阱电荷
Hydrogen plays a crucial role in realizing modern silicon devices. Molecular hydrogen may be found in processes of integrated circuit fabrication and packaging, such as wafer cleaning procedure, film depositions, high- and low-temperature anneal and die attachment by forming gas. It has been shown that hydrogen has strong effects on the total dose and dose rate response to bipolar devices. In order to study the relationship between hydrogen and radiation-induced products, we preform two experiments by using gate-lateral PNP transistors. In the first experiment, one set of devices is soaked in 100% hydrogen gas for 60 h and another set is not soaked, they are together irradiated at 5 rad(Si)/s to a total dose of 50 krad(Si). In the second experiment, devices are irradiated at 50 rad(Si)/s to 100 krad(Si), and then one group is annealed in 100% hydrogen gas and the other is annealed in the air for 40 h at the same temperature. The results show that the damage to devices which are soaked in hydrogen before irradiation is stronger than the devices that are not soaked, the anneal characteristics of devices in hydrogen gas are also changed more greatly than in the air. So the hydrogen can enhance the radiation and anneal damage to bipolar transistors. Using the gate-sweep technique, the radiation-induced products are separated and show that the hydrogen that enters into the transistor will cause the interface traps to increase and oxide trapped charge to decrease. The main reason is that the hydrogen can react with the oxide trapped charge to produce protons which can transport to the Si/SiO2 interface, and then react with H-passivized bond to create interface trap. Based on the reaction mechanism presented in our work, a numerical model of enhanced low dose rate sensitivity including molecular hydrogen reaction and proton generation mechanism is established. The simulation results for the density of interface traps and oxide trapped charge show a trend consistent with the experimental data, which verifies the correctness of the damage mechanism. This research provides not only the basis of the study of damage mechanism of bipolar devices, but also the powerful support for hydrogen soaking irradiation acceleration method.-
Keywords:
- gate-controlled transistor /
- hydrogen /
- enhanced low dose rate sensitivity /
- interface traps /
- oxide trapped charge
[1] Seiler J E, Pease, Platteter D G, Maher, Dunham G W, Pease R L, Maher M C, Shaneyfelt M R 2004 IEEE Radiation Effects Data Workshop Atlanta, USA, July 22, 2004 p42
[2] Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G L, Fleetwood D M, Dodd P E, Reber C A 2002 IEEE Trans. Nucl. Sci. 49 3171Google Scholar
[3] Shaneyfelt M R, Pease R L, Maher M C, Schwank J R, Gupta S, Dodd P E, Riewe L C 2003 IEEE Trans. Nucl. Sci. 50 1784Google Scholar
[4] Adell P C, Rax B, Esqueda I S, Barnaby H J 2015 IEEE Trans. Nucl. Sci. 62 2476Google Scholar
[5] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar
[6] Pease R L, Platteter D G, Dunham G W, Seiler J E, Adell P C, Barnaby H J, Chen J 2007 IEEE Trans. Nucl. Sci. 54 2168Google Scholar
[7] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar
Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar
[8] Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347Google Scholar
[9] Pease R L, Adell P C, Rax B, McClure S, Barnaby H J, Kruckmeyer K, Triggs B 2010 IEEE Trans. Nucl. Sci. 57 3419Google Scholar
[10] 赵金宇, 杨剑群, 董磊, 李兴冀 2019 68 068501Google Scholar
Zhao J Y, Yang J Q, Dong L, Li X J 2019 Acta Phys. Sin. 68 068501Google Scholar
[11] Adell P C, Pease R L, Barnaby H J, Rax B, Chen X J, McClure S S 2009 IEEE Trans. Nucl. Sci. 56 3326Google Scholar
[12] Chen X J, Barnaby H J, Adell P, Pease, R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar
[13] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar
[14] Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M, Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039Google Scholar
[15] Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar
[16] Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar
[17] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103Google Scholar
Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103Google Scholar
[18] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar
[19] 姚志斌 2014 博士学位论文 (西安: 西北核技术研究所)
Yao Z B 2014 Ph. D. Dissertation (Xi’an: Northwest Institude of Nuclear Technology) (in Chinese)
[20] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2001 Phys. Rev. Lett. 87 165501Google Scholar
[21] 姚志斌, 陈伟, 何宝平, 马武英, 盛江坤, 刘敏波, 王祖军, 金军山, 张帅 2018 原子能科学技术 52 1144Google Scholar
Yao Z B, Chen W, He B P, Ma W Y, Sheng J K, Liu M B, Wang Z J, Jin J S, Zhang S 2018 Atom. Energ. Sci. Technol. 52 1144Google Scholar
[22] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar
-
-
[1] Seiler J E, Pease, Platteter D G, Maher, Dunham G W, Pease R L, Maher M C, Shaneyfelt M R 2004 IEEE Radiation Effects Data Workshop Atlanta, USA, July 22, 2004 p42
[2] Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G L, Fleetwood D M, Dodd P E, Reber C A 2002 IEEE Trans. Nucl. Sci. 49 3171Google Scholar
[3] Shaneyfelt M R, Pease R L, Maher M C, Schwank J R, Gupta S, Dodd P E, Riewe L C 2003 IEEE Trans. Nucl. Sci. 50 1784Google Scholar
[4] Adell P C, Rax B, Esqueda I S, Barnaby H J 2015 IEEE Trans. Nucl. Sci. 62 2476Google Scholar
[5] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar
[6] Pease R L, Platteter D G, Dunham G W, Seiler J E, Adell P C, Barnaby H J, Chen J 2007 IEEE Trans. Nucl. Sci. 54 2168Google Scholar
[7] 李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar
Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar
[8] Boch J, Velo Y G, Saigne F, Roche N J H, Schrimpf R D, Vaille J R, Dusseau L, Chatry C, Lorfevre E, Ecoffet R, Touboul A D 2009 IEEE Trans. Nucl. Sci. 56 3347Google Scholar
[9] Pease R L, Adell P C, Rax B, McClure S, Barnaby H J, Kruckmeyer K, Triggs B 2010 IEEE Trans. Nucl. Sci. 57 3419Google Scholar
[10] 赵金宇, 杨剑群, 董磊, 李兴冀 2019 68 068501Google Scholar
Zhao J Y, Yang J Q, Dong L, Li X J 2019 Acta Phys. Sin. 68 068501Google Scholar
[11] Adell P C, Pease R L, Barnaby H J, Rax B, Chen X J, McClure S S 2009 IEEE Trans. Nucl. Sci. 56 3326Google Scholar
[12] Chen X J, Barnaby H J, Adell P, Pease, R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar
[13] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar
[14] Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M, Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039Google Scholar
[15] Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar
[16] Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar
[17] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103Google Scholar
Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103Google Scholar
[18] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar
Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar
[19] 姚志斌 2014 博士学位论文 (西安: 西北核技术研究所)
Yao Z B 2014 Ph. D. Dissertation (Xi’an: Northwest Institude of Nuclear Technology) (in Chinese)
[20] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2001 Phys. Rev. Lett. 87 165501Google Scholar
[21] 姚志斌, 陈伟, 何宝平, 马武英, 盛江坤, 刘敏波, 王祖军, 金军山, 张帅 2018 原子能科学技术 52 1144Google Scholar
Yao Z B, Chen W, He B P, Ma W Y, Sheng J K, Liu M B, Wang Z J, Jin J S, Zhang S 2018 Atom. Energ. Sci. Technol. 52 1144Google Scholar
[22] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar
计量
- 文章访问数: 4226
- PDF下载量: 52
- 被引次数: 0