-
为了对双极器件在电离辐射环境下的损伤机理及加固技术进行深入的研究,对设计制作的不同工艺类型的栅控横向PNP双极晶体管进行了60Co-γ 低剂量率辐照试验. 结果表明:1)栅控双极晶体管的辐射特性具有很强的工艺相关性,钝化层的存在对于双极晶体管的辐射响应具有很大影响,有钝化层的器件在电离辐射环境中会产生更多的界面态,其抗辐射能力大大减弱;2)针对国产栅控横向PNP晶体管在低剂量率辐照时会发生峰值电流展宽效应,文中对展宽效应潜在机理进行了分析,并针对展宽效应提出了新的分离方法. 这不但对设计抗辐射加固器件提供了依据,而且为进一步深入研究双极器件的低剂量率辐射损伤增强效应提供了强有力工具.
-
关键词:
- 栅控双极PNP晶体管 /
- 60Coγ辐照 /
- 辐射损伤
In order to study the total dose effect and hardness assurance technology for the bipolar devices, we have designed and fabricated different gate-controlled lateral PNP bipolar transistors by various technologies, and preformed 60Co-γ low-dose rate irradiation. The test results show that: 1) Irradiation characteristics of the gate-controlled bipolar transistor are strongly dependent on the fabrication technology, and the passivation layer has a great influence on the irradiation response of the device. The device with a passivation layer will have more interface traps in ionizing radiation environments, and its resistance to ionizing irradiation is greatly weakened. 2) A domestic gated-controlled lateral PNP transistor exhibited a peak current broadening effect at low-dose rate irradiation. In this paper, we analyze the mechanism of the broadening effect, and put forward a new separation method for reducing the base current broadening effect, which not only provides the basis for the design of hardened devices, but also a powerful tool for the study of the enhanced low-dose rate sensitivity of the bipolar device.-
Keywords:
- GCLPNP BJTs /
- 60Coγ irradiation /
- ionizing damage
[1] Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342
[2] Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871
[3] Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Su P 2011 Acta Phys. Sin. 60 088501 (in Chinese)[翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 60 088501]
[4] He B P, Yao Z B 2010 Acta Phys. Sin. 59 1985 (in Chinese)[何宝平, 姚志斌 2010 59 1985]
[5] Lu W, Ren D Y, Guo Q, Yu X F, He C F, Zhen Y Z, Wang Y Y 2009 Acta Phys. Sin. 58 5572 (in Chinese)[陆妩, 任迪远, 郭旗, 余学锋, 何承发, 郑玉展, 王义元 2009 58 5572]
[6] Wang Y Y, Lu Wu, Ren D Y, Guo Q, Yu X F, Ren D Y, He C F, G B 2011 Acta Phys. Sin. 60 096104 (in Chinese)[王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 60 096104]
[7] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
[8] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese)[李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[9] Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 61 236103]
[10] Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103])
[11] McWhorter P J, Winokur P S 1986 Appl Phys. Lett. 48 133
[12] Pease R, Emily D, H E Boesch 1985 IEEE Trans. Nucl. Sci. 32 3946
[13] Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3178
[14] Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185
[15] Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
[16] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
[17] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dun-ham G 2004 IEEE Trans. Nucl. Sci. 51 3723
[18] Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D, Shaneyfelt M, Vermeire B 2005 IEEE Trans. Nucl. Sci. 52 2245
-
[1] Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342
[2] Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871
[3] Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Su P 2011 Acta Phys. Sin. 60 088501 (in Chinese)[翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 60 088501]
[4] He B P, Yao Z B 2010 Acta Phys. Sin. 59 1985 (in Chinese)[何宝平, 姚志斌 2010 59 1985]
[5] Lu W, Ren D Y, Guo Q, Yu X F, He C F, Zhen Y Z, Wang Y Y 2009 Acta Phys. Sin. 58 5572 (in Chinese)[陆妩, 任迪远, 郭旗, 余学锋, 何承发, 郑玉展, 王义元 2009 58 5572]
[6] Wang Y Y, Lu Wu, Ren D Y, Guo Q, Yu X F, Ren D Y, He C F, G B 2011 Acta Phys. Sin. 60 096104 (in Chinese)[王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 60 096104]
[7] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706
[8] Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese)[李瑞珉, 杜磊, 庄奕琪, 包军林 2007 56 3400]
[9] Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 61 236103]
[10] Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103])
[11] McWhorter P J, Winokur P S 1986 Appl Phys. Lett. 48 133
[12] Pease R, Emily D, H E Boesch 1985 IEEE Trans. Nucl. Sci. 32 3946
[13] Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3178
[14] Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185
[15] Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894
[16] Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650
[17] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dun-ham G 2004 IEEE Trans. Nucl. Sci. 51 3723
[18] Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D, Shaneyfelt M, Vermeire B 2005 IEEE Trans. Nucl. Sci. 52 2245
计量
- 文章访问数: 6161
- PDF下载量: 471
- 被引次数: 0