搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效在线测量加速实验中双极晶体管结温方法的研究

郭春生 丁嫣 姜舶洋 廖之恒 苏雅 冯士维

引用本文:
Citation:

高效在线测量加速实验中双极晶体管结温方法的研究

郭春生, 丁嫣, 姜舶洋, 廖之恒, 苏雅, 冯士维

High-efficiency on-line measurement of junction temperature based on bipolar transistors in accelerated experiment

Guo Chun-Sheng, Ding Yan, Jiang Bo-Yang, Liao Zhi-Heng, Su Ya, Feng Shi-Wei
PDF
导出引用
  • 针对晶体管在加速寿命实验和老炼实验等实际工程中结温的在线测控问题,本文基于大电流电学测温方法研究了型号为2N3055的双极大功率晶体管在恒定的集电极电压Vce和集电极电流Ice条件下发射结电压Vbe随着温度T变化的对应关系.研究结果表明,温度在40–140 ℃范围内时,在集电极加载大功率电流电压的条件下,发射结电压随温度上升而线性减小,基极电流随温度变化不超过4%.通过理论推导恒定功率下发射结电压与温度的数学模型,证明了当基极电流数值随温度变化不超过4%时,Vbe-T关系曲线呈线性且理论上引起的温度误差不超过0.5 ℃,以此为基础推导出一种新的在线测量加速实验中结温测试公式.最后利用Phase11进行对比验证实验,证明了该方法的正确性.
    Junction temperature is an important factor affecting the reliabilities of semiconductor devices. Usually, the method of measuring the junction temperature is not tested on-line. However, due to the fact that neither contact thermal resistance nor thermal resistance varying with temperature is taken into account, there exists an error in the off-line measurement. A way to solve the problem of off-line measurement is to measure the junction temperature on-line. In this paper, we propose an electrical method of measuring the temperature rise of high-power bipolar transistor in the working condition. The measurement method is based on a good linear relationship between base-emitter voltage (Vbe) and temperature during the steady-state. Taking the model 2N3055 of bipolar high power transistor for example, in this paper we study the relationship between base-emitter voltage (Vbe) and temperature under the conditions of constant collector-emitter voltage (Vce) and collector-current (Ice). During the experiment, the device is placed in a thermostat. A voltage is applied to the device collector, a current is applied to the base, and the emitter is earthed. Before the device is measured, we set different temperatures and make sure that the equipment is in a steady state. In order to avoid the effect of self-heating, the pulse current is used in the experiment. The pulse width and the period are 500 μups and 1 ms, respectively.The research result shows that the base-emitter voltage (Vbe) decreases linearly with temperature increasing and the base-emitter current is changed below 4% when the temperature is in a range of 40 ℃-140 ℃. In this paper we also deduce the mathematical expressions for base-emitter voltage (Vbe) and temperature under a steady state. It is proved that the Vbe-temperatrue curve is linear and temperature error is less than 0.5 ℃ when the changes of base current value does not exceed 4%. Therefore, in this paper we deduce a new method of testing the junction temperature in the speeding up measurement experiment. By measuring any of the reference points on the calibration curve under certain experimental conditions, the junction temperature can be calculated quickly according to the proposed formula.Finally, the phase 11 is used to verify the proposed method. We measure the thermal resistance upper the case for the junction of model 2N3055 and the thermal resistance under the case for the junction of model 2SD1047. The measurement results of phase11are compared with the junction temperature calculated using the test formula. The results show that the error of junction temperature between the two methods is less than 0.7%, which is corresponding with the needs of practical application. It proves the correctness and feasibility of the method.
      通信作者: 郭春生, guocs@bjut.edu.cn
    • 基金项目: 北京市教委基金(批准号:KM201510005008)资助的课题.
      Corresponding author: Guo Chun-Sheng, guocs@bjut.edu.cn
    • Funds: Project supported by the Beijing Municipal Commission of the Education Foundation of China (Grant No. KM201510005008).
    [1]

    Maset E, Sanchis Kilders E, Ejea J B, Ferreres A 2009 IEEE Trans. Dev. Mater. Reliab. 9 557

    [2]

    Qi H C, Zhang X L, Xie X S 2013 J. Semicond. 34 064010

    [3]

    Rong B H, Wang X Y, An Z F, Zhong L, Chen G Y, Zhang C S (in Chinese) [荣宝辉, 王晓燕, 安振峰, 仲琳, 陈国鹰, 张存善 2008 半导体技术 33 360]

    [4]

    Guo C S, Li S W, Ren Y X, Gao L, Feng S W, Zhu H 2016 Acta Phys. Sin. 65 077201 (in Chinese) [郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧 2016 65 077201]

    [5]

    Li R, Guo C S, Feng S W, Shi L, Zhu H, Wang L 2015 Chin. Phys. B 24 076601

    [6]

    Jia Y, Zeng C H, Liang W, Li D, Li J H (in Chinese) [贾颖, 曾晨晖, 梁伟, 李逗, 李霁红 2016 半导体技术 31 35]

    [7]

    Avenas Y, Dupont L, Khatir Z 2012 IEEE Trans. Power Electron. 27 3081

    [8]

    Yuan Y, Xiang D, Ning C 2016 IEEE 8th International Power Electronics and Motion Control Conference Hefei, China, May 22-25, 2016 p3125

    [9]

    Kuhn H, Mertens A 2009 European Conference on Power Electronics and Applications IEEE Barcelona, September 8-, 2009 p1

    [10]

    Wang L 2015 M. S. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [王琳 2015 硕士学位论文 (北京: 北京工业大学)]

    [11]

    Senturk O S, Munk-Nielsen S, Teodorescu R, Helle L, Rodriguez P 2011 Energy Conversion Congress and Exposition IEEE Phoenix, Arizona, USA, September 17-, 2011 p568

    [12]

    Xu Z, Wang F, Ning P 2012 Energy Conversion Congress and Exposition. IEEE Raleigh, North Carolina, USA, September 15-, 2012 p91

    [13]

    Baker N, Munk-Nielsen S, Iannuzzo F, Liserre M 2015 IEEE Trans. Power Electron. 31 3784

    [14]

    Baker N, Munk-Nielsen S, Iannuzzo F, Liserre M 2015 Applied Power Electronics Conference and Exposition. IEEE Charlotte, NC, USA, March 15-, 2015 p1270

    [15]

    Zhu Y J, Miao Q H, Zhang X H, Yang L Y, Lu S J 2007 J. Cemicond. 28 980 (in Chinese) [朱阳军, 苗庆海, 张兴华, Yang Lieyang, 卢烁今 2007 半导体学报 28 980]

    [16]

    Sze S M, NG K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) pp188-195 (in Chinese) [施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008半导体器件物理 (西安: 西安交通大学出版社)第188–195页]

    [17]

    Liu E K, Zhu B S, Luo J S et al. 2010 Semiconductor Physics (Beijing: National Defense Industry Press) p172 (in Chinese) [刘恩科, 朱秉生, 罗晋生等 2010 半导体物理学 (北京: 国防工业出版社) 第172页]

    [18]

    Chen S Q 2000 Phys. Exp. 20 7 (in Chinese) [陈水桥 2000 物理实验 20 7]

  • [1]

    Maset E, Sanchis Kilders E, Ejea J B, Ferreres A 2009 IEEE Trans. Dev. Mater. Reliab. 9 557

    [2]

    Qi H C, Zhang X L, Xie X S 2013 J. Semicond. 34 064010

    [3]

    Rong B H, Wang X Y, An Z F, Zhong L, Chen G Y, Zhang C S (in Chinese) [荣宝辉, 王晓燕, 安振峰, 仲琳, 陈国鹰, 张存善 2008 半导体技术 33 360]

    [4]

    Guo C S, Li S W, Ren Y X, Gao L, Feng S W, Zhu H 2016 Acta Phys. Sin. 65 077201 (in Chinese) [郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧 2016 65 077201]

    [5]

    Li R, Guo C S, Feng S W, Shi L, Zhu H, Wang L 2015 Chin. Phys. B 24 076601

    [6]

    Jia Y, Zeng C H, Liang W, Li D, Li J H (in Chinese) [贾颖, 曾晨晖, 梁伟, 李逗, 李霁红 2016 半导体技术 31 35]

    [7]

    Avenas Y, Dupont L, Khatir Z 2012 IEEE Trans. Power Electron. 27 3081

    [8]

    Yuan Y, Xiang D, Ning C 2016 IEEE 8th International Power Electronics and Motion Control Conference Hefei, China, May 22-25, 2016 p3125

    [9]

    Kuhn H, Mertens A 2009 European Conference on Power Electronics and Applications IEEE Barcelona, September 8-, 2009 p1

    [10]

    Wang L 2015 M. S. Dissertation (Beijing: Beijing University of Technology) (in Chinese) [王琳 2015 硕士学位论文 (北京: 北京工业大学)]

    [11]

    Senturk O S, Munk-Nielsen S, Teodorescu R, Helle L, Rodriguez P 2011 Energy Conversion Congress and Exposition IEEE Phoenix, Arizona, USA, September 17-, 2011 p568

    [12]

    Xu Z, Wang F, Ning P 2012 Energy Conversion Congress and Exposition. IEEE Raleigh, North Carolina, USA, September 15-, 2012 p91

    [13]

    Baker N, Munk-Nielsen S, Iannuzzo F, Liserre M 2015 IEEE Trans. Power Electron. 31 3784

    [14]

    Baker N, Munk-Nielsen S, Iannuzzo F, Liserre M 2015 Applied Power Electronics Conference and Exposition. IEEE Charlotte, NC, USA, March 15-, 2015 p1270

    [15]

    Zhu Y J, Miao Q H, Zhang X H, Yang L Y, Lu S J 2007 J. Cemicond. 28 980 (in Chinese) [朱阳军, 苗庆海, 张兴华, Yang Lieyang, 卢烁今 2007 半导体学报 28 980]

    [16]

    Sze S M, NG K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) pp188-195 (in Chinese) [施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008半导体器件物理 (西安: 西安交通大学出版社)第188–195页]

    [17]

    Liu E K, Zhu B S, Luo J S et al. 2010 Semiconductor Physics (Beijing: National Defense Industry Press) p172 (in Chinese) [刘恩科, 朱秉生, 罗晋生等 2010 半导体物理学 (北京: 国防工业出版社) 第172页]

    [18]

    Chen S Q 2000 Phys. Exp. 20 7 (in Chinese) [陈水桥 2000 物理实验 20 7]

  • [1] 成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志. 高功率GaN 微波器件大信号缩放模型.  , 2023, 72(14): 147103. doi: 10.7498/aps.72.20230440
    [2] 熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁. 面向宽温域功能器件的连续组分外延铁电薄膜.  , 2023, 72(9): 097701. doi: 10.7498/aps.72.20230154
    [3] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究.  , 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [4] 杨娜娜, 陈轩, 汪尧进. 磁电异质结及器件应用.  , 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [5] 郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧. 加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响.  , 2016, 65(7): 077201. doi: 10.7498/aps.65.077201
    [6] 郭春生, 王琳, 翟玉卫, 李睿, 冯士维, 朱慧. 瞬态大电流测量结温中校温曲线弯曲现象的研究.  , 2015, 64(18): 184704. doi: 10.7498/aps.64.184704
    [7] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件.  , 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [8] 李春来, 段宝兴, 马剑冲, 袁嵩, 杨银堂. 具有P型覆盖层新型超级结横向双扩散功率器件.  , 2015, 64(16): 167304. doi: 10.7498/aps.64.167304
    [9] 招瑜, 魏爱香, 刘俊. 利用温变电容特性测量发光二极管结温的研究.  , 2015, 64(11): 118501. doi: 10.7498/aps.64.118501
    [10] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究.  , 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [11] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件.  , 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [12] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管.  , 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [13] 陈海鹏, 曹军胜, 郭树旭. 高功率半导体激光器结温与1/f噪声的关系研究.  , 2013, 62(10): 104209. doi: 10.7498/aps.62.104209
    [14] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响.  , 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [15] 陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭. AlGaInP大功率发光二极管发光效率与结温的关系.  , 2011, 60(8): 087206. doi: 10.7498/aps.60.087206
    [16] 倪金玉, 郝跃, 张进成, 段焕涛, 张金风. 高温AlN插入层对AlGaN/GaN异质结材料和HEMTs器件电学特性的影响.  , 2009, 58(7): 4925-4930. doi: 10.7498/aps.58.4925
    [17] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性.  , 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [18] 李英德. 分子结电学特性的理论研究.  , 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [19] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质.  , 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] 陈开茅, 贾勇强, 金泗轩, 吴克, 李传义, 顾镇南, 周锡煌. 固体C60/Si异质结的电学表征——整流特性、能带模型与温偏效应.  , 1996, 45(2): 265-273. doi: 10.7498/aps.45.265
计量
  • 文章访问数:  6067
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map