搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟化时间对环氧树脂绝缘表面电荷积累的影响

刘亚强 安振连 仓俊 张冶文 郑飞虎

引用本文:
Citation:

氟化时间对环氧树脂绝缘表面电荷积累的影响

刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎

Influence of fluorination time on surface charge accumulation on epoxy resin insulation

Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu
PDF
导出引用
  • 为抑制环氧树脂绝缘的表面电荷积累、研究处理时间对表面电荷积累的影响, 使用氟/氮混合气在实验室反应釜中对环氧试样进行了不同时间(10 min, 30 min和60 min)的表面氟化处理. 衰减全反射红外分析与SEM断面和表面观察表明随氟化时间的增加, 氟化层的氟化度和厚度增大, 表面微观粗糙度降低、表面组织变得致密. 与开路热刺激放电电流测量所表明的、未氟化(原)试样有深的表面电荷陷阱和稳定的表面电荷相比, 这些氟化试样的表面不能存储电荷. 沉积在它们表面上的电晕电荷于室温下分别约在2 min, 10 min和15 min内快速衰减为零, 展现随氟化时间的延长而减慢的电荷释放速率. 表面电导率和接触角测量及表面能计算表明氟化引起表面电导率和表面润湿性与极性的显著增加, 但它们随氟化时间的延长而减小. 氟化试样表面电导率的显著增大归因于表面电荷陷阱的非常可能的实质变浅和表面吸附的水分. 表面充电电流测量进一步地表明, 与原试样几乎为零的稳态表面电流相比, 这些氟化试样在连续充电期间显现大的稳态表面电流. 这意味着这些氟化试样在充电期间比原试样有少得多的表面电荷积累.
    In order to suppress surface charge accumulation on the epoxy resin insulation and to investigate the influence of treatment time on the charge accumulation, epoxy samples are surface fluorinated for the different times of 10 min, 30 min and 60 min in a laboratory vessel using an F2/N2 mixture. Attenuated total reflection infrared analyses and the observations of the cross section and the surface of the samples by SEM indicate the increases in degree of fluorination, thickness and compactness of the fluorinated layer, and the decrease in surface roughness, with treatment time increasing. Compared with the deep surface charge traps and stable surface charge of the unfluorinated (original) sample, as indicated by the open-circuit thermally stimulated discharge current measurement, the fluorinated surface cannot store the charge. The corona charges deposited on the sample surfaces fluorinated for 10 min, 30 min or 60 min rapidly decay to zero in about 2 min, 10 min or 15 mi at room temperature respectively, showing a slowed-down release of charge with fluorination time. The measurements of surface conductivity and contact angle and the calculation of surface energy reveal that fluorination gives rise to dramatic increases in surface conductivity, surface wettability and polarity, while they decrease with treatment time. The significant increase in surface conductivity of the fluorinated sample is attributed to a very likely substantial decrease in trap depth and the adsorbed water on the fluorinated surfac. Surface charging current measurements further show that large steady state current flows along the fluorinated surface during corona charging, in comparison with the almost zero steady state current for the original sample. This implies that the fluorinated sample has much lower surface charge accumulation in the period of charging, than the original sample.
    • 基金项目: 国家自然科学基金(批准号: 50977065)和电力设备电气绝缘国家重点实验室(批准号: EIPE11210)资助的课题
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50977065), and the State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE11210).
    [1]

    De Lorenzi A, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. DEI 16 77

    [2]

    Ponsonby A, Farish O 1999 Proceedings of the 11th International Symposium on High Voltage Engineering London, August 23-27, 1999 p248

    [3]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [4]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. DEI 7 241

    [5]

    Volpov E 2002 IEEE Electr. Insul. M 18 7

    [6]

    Hama H, Hikosaka T, Okabe S, Okubo H 2007 IEEE Trans. DEI 14 508

    [7]

    Kaneko S, Okabe S, Kobayashi T, Nojima K, Takei M, Miyamoto T 2009 Electr. Eng. Jpn. 168 6

    [8]

    Imano A M 2004 J. Electrostat. 61 1

    [9]

    Hasegawa T, Yamaji K, Hatano M, Endo F, Rokunohe T, Yamagiwa T 1997 IEEE Trans. Power Delivery 12 194

    [10]

    Kharitonov A P 2008 Prog. Org. Coat. 61 192

    [11]

    Tressaud A, Durand E, Labrugere C, Kharitonov A P, Kharitonova L N 2007 J. Fluorine Chem. 128 378

    [12]

    An Z, Zhao M, Yao Y, Zhang Y, Xia Z 2009 J. Phys. D: Appl. Phys. 42 015418

    [13]

    An Z, Mao M, Yao J, Zhang Y, Xia Z 2010 J. Phys. D: Appl. Phys. 43 415302

    [14]

    Yao J, An Z, Mao M, Zhang Y, Xia Z 2010 Acta Phys. Sin. 59 6508 (in Chinese) [姚俊兰, 安振连, 毛明军, 张冶文, 夏钟福 2010 59 6508]

    [15]

    An Z, Yang Q, Xie C, Jiang Y, Zheng F, Zhang Y 2009 J. Appl. Phys. 105 064102

    [16]

    Jiang Y, An Z, Liu C, Zheng F, Zhang Y 2010 IEEE Trans. DEI 17 1814

    [17]

    An Z, Liu C, Chen X, Zheng F, Zhang Y 2012 Acta Phys. Sin. 61 098201 (in Chinese) [安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文 2012 61 098201]

    [18]

    Wu S 1982 Polymer Interface and Adhesion (Marcel Dekker, New York) p169

    [19]

    Morell M, Ramis X, Ferrando F, Yu Y, Serra A 2009 Polymer 50 5374

    [20]

    Cherdoud-Chihani A, Mouzali M, Abadie M J M 2003 J. Appl. Polym. Sci. 87 2033

    [21]

    Meure S, Wu D Y, Furman S A 2010 Vibrational Spectroscopy 52 10

    [22]

    Kranz G, Lüschen R, Gesang T, Schlett V, Hennemann O D, Stohrer W D 1994 Int. J. Adhes. Adhes. 14 243

    [23]

    Ryan B J, Poduska K M 2008 Am. J. Phys. 76 1074

    [24]

    du Toit F J, Sanderson R D 1999 J. Fluorine Chem. 98 107

    [25]

    Le Roux J D, Paul D R, Arendt M F, Yuan Y, Cabasso I 1994 J. Membr. Sci. 90 37

  • [1]

    De Lorenzi A, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. DEI 16 77

    [2]

    Ponsonby A, Farish O 1999 Proceedings of the 11th International Symposium on High Voltage Engineering London, August 23-27, 1999 p248

    [3]

    Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055

    [4]

    Tenbohlem S, Schrocher G 2000 IEEE Trans. DEI 7 241

    [5]

    Volpov E 2002 IEEE Electr. Insul. M 18 7

    [6]

    Hama H, Hikosaka T, Okabe S, Okubo H 2007 IEEE Trans. DEI 14 508

    [7]

    Kaneko S, Okabe S, Kobayashi T, Nojima K, Takei M, Miyamoto T 2009 Electr. Eng. Jpn. 168 6

    [8]

    Imano A M 2004 J. Electrostat. 61 1

    [9]

    Hasegawa T, Yamaji K, Hatano M, Endo F, Rokunohe T, Yamagiwa T 1997 IEEE Trans. Power Delivery 12 194

    [10]

    Kharitonov A P 2008 Prog. Org. Coat. 61 192

    [11]

    Tressaud A, Durand E, Labrugere C, Kharitonov A P, Kharitonova L N 2007 J. Fluorine Chem. 128 378

    [12]

    An Z, Zhao M, Yao Y, Zhang Y, Xia Z 2009 J. Phys. D: Appl. Phys. 42 015418

    [13]

    An Z, Mao M, Yao J, Zhang Y, Xia Z 2010 J. Phys. D: Appl. Phys. 43 415302

    [14]

    Yao J, An Z, Mao M, Zhang Y, Xia Z 2010 Acta Phys. Sin. 59 6508 (in Chinese) [姚俊兰, 安振连, 毛明军, 张冶文, 夏钟福 2010 59 6508]

    [15]

    An Z, Yang Q, Xie C, Jiang Y, Zheng F, Zhang Y 2009 J. Appl. Phys. 105 064102

    [16]

    Jiang Y, An Z, Liu C, Zheng F, Zhang Y 2010 IEEE Trans. DEI 17 1814

    [17]

    An Z, Liu C, Chen X, Zheng F, Zhang Y 2012 Acta Phys. Sin. 61 098201 (in Chinese) [安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文 2012 61 098201]

    [18]

    Wu S 1982 Polymer Interface and Adhesion (Marcel Dekker, New York) p169

    [19]

    Morell M, Ramis X, Ferrando F, Yu Y, Serra A 2009 Polymer 50 5374

    [20]

    Cherdoud-Chihani A, Mouzali M, Abadie M J M 2003 J. Appl. Polym. Sci. 87 2033

    [21]

    Meure S, Wu D Y, Furman S A 2010 Vibrational Spectroscopy 52 10

    [22]

    Kranz G, Lüschen R, Gesang T, Schlett V, Hennemann O D, Stohrer W D 1994 Int. J. Adhes. Adhes. 14 243

    [23]

    Ryan B J, Poduska K M 2008 Am. J. Phys. 76 1074

    [24]

    du Toit F J, Sanderson R D 1999 J. Fluorine Chem. 98 107

    [25]

    Le Roux J D, Paul D R, Arendt M F, Yuan Y, Cabasso I 1994 J. Membr. Sci. 90 37

  • [1] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性.  , 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 李国倡, 李盛涛. 空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述.  , 2019, 68(23): 239401. doi: 10.7498/aps.68.20191252
    [4] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性.  , 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [5] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系.  , 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [6] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性.  , 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [7] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究.  , 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [8] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响.  , 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [9] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性.  , 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [10] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [11] 吕兵, 令狐荣锋, 宋晓书, 王晓璐, 杨向东, 贺端威. 氧原子在Pt(111)表面和次表层的吸附与扩散.  , 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [12] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响.  , 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [13] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷.  , 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [14] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响.  , 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [15] 李 宏, 郭华忠, 路 川, 李 玲, 高 洁. 声表面波单电子输运器件中量子线的电学特性研究.  , 2008, 57(9): 5863-5868. doi: 10.7498/aps.57.5863
    [16] 郑俊娟, 孙 刚. 周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合.  , 2005, 54(6): 2751-2757. doi: 10.7498/aps.54.2751
    [17] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算.  , 1994, 43(12): 1950-1956. doi: 10.7498/aps.43.1950
    [18] 冯世平. 表面与界面的绝缘铁磁理论.  , 1986, 35(11): 1542-1546. doi: 10.7498/aps.35.1542
    [19] 孙鑫. 表面电荷层的集体激发.  , 1978, 27(6): 752-755. doi: 10.7498/aps.27.752
    [20] 徐世秋, 韩季之. 环氧树脂在固化过程中的红外吸收光谱.  , 1960, 16(2): 81-85. doi: 10.7498/aps.16.81
计量
  • 文章访问数:  7114
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2012-01-05
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map