搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究

陈东运 高明 李拥华 徐飞 赵磊 马忠权

引用本文:
Citation:

MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究

陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权

First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface

Chen Dong-Yun, Gao Ming, Li Yong-Hua, Xu Fei, Zhao Lei, Ma Zhong-Quan
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法, 通过模拟MoO3/Si界面反应, 研究了MoOx薄膜沉积中原子、分子的吸附、扩散和成核过程, 从原子尺度阐明了缓冲层钼掺杂非晶氧化硅(a-SiOx(Mo))物质的形成和机理. 结果表明, 在1500 K温度下, MoO3/Si界面区由Mo, O, Si三种原子混合, 可形成新的稳定的物相. 热蒸发沉积初始时, MoO3中的两个O原子和Si成键更加稳定, 同时伴随着电子从Si到O的转移, 钝化了硅表面的悬挂键. MoO3中氧空位的形成能小于SiO2中氧空位的形成能, 使得O原子容易从MoO3中迁移至Si衬底一侧, 从而形成氧化硅层; 替位缺陷中, Si替位MoO3中的Mo的形成能远远大于Mo替位SiO2中的Si的形成能, 使得Mo容易掺杂进入氧化硅中. 因此, 在晶硅(100)面上沉积MoO3薄膜时, MoO3中的O原子先与Si成键, 形成氧化硅层, 随后部分Mo原子替位氧化硅中的Si原子, 最终形成含有钼掺杂的非晶氧化硅层.
    An amorphous mixing layer (3.5–4.0 nm in thickness) containing silicon (Si), oxygen (O), molybdenum (Mo) atoms, named α-SiOx(Mo), is usually formed by evaporating molybdenum trioxide (MoO3) powder on an n-type Si substrate. In order to investigate the process of adsorption, diffusion and nucleation of MoO3 in the evaporation process and ascertain the formation mechanism of α-SiOx(Mo) on a atomic scale, the first principle calculation is used and all the results are obtained by using the Vienna ab initio simulation package. The possible adsorption model of MoO3 on the Si (100) and the defect formation energy for substitutional defects and vacancy defects in α-SiO2 and α-MoO3 are calculated by the density functional theory. The results show that an amorphous layer is formed between MoO3 film and Si (100) substrate according to ab initio molecular dynamics at 1500 K, which are in good agreement with experimental observations. The O and Mo atoms diffuse into Si substrate and form the bonds of Si—O or Si—O—Mo, and finally, form an α-SiOx(Mo) layer. The adsorption site of MoO3 on the reconstructed Si (100) surface, where the two oxygen atoms of MoO3 bond with two silicon atoms of Si (100) surface, is the most stable and the adsorption energy is -5.36 eV, accompanied by the electrons transport from Si to O. After the adsorption of MoO3 on the Si substrate, the structure of MoO3 is changed. Two Mo—O bond lengths of MoO3 are 1.95 Å and 1.94 Å, respectively, elongated by 0.22 Å and 0.21 Å compared with the those before the adsorption of MoO3 on Si substrate, while the last bond length of MoO3 is little changed. The defect formation energy value of neutral oxygen vacancy in α-SiO2 is 5.11 eV and the defect formation energy values of neutral oxygen vacancy in α-MoO3 are 0.96 eV, 1.96 eV and 3.19 eV, respectively. So it is easier to form oxygen vacancy in MoO3 than in SiO2, which implies that the oxygen atoms will migrate from MoO3 to SiO2 and forms a 3.5–4.0-nm-thick α-SiOx(Mo) layer. As for the substitutional defects in MoO3 and SiO2, Mo substitutional defects are most likely to form in SiO2 in a large range of Mo chemical potential. So based on our obtained results, the forming process of the amorphous mixing layer may be as follows: the O atoms from MoO3 bond with Si atoms first and form the SiOx. Then, part of Mo atoms are likely to replace Si atoms in SiOx. Finally, the ultra-thin buffer layer containing Si, O, Mo atoms is formed at the interface of MoO3/Si. This work simulates the reaction of MoO3/Si interface and makes clear the interfacial geometry. It is good for us to further understand the process of adsorption and diffusion of atoms during evaporating, and it also provides a theoretical explanation for the experimental phenomenon and conduces to obtaining better interface passivation and high conversion efficiency of solar cell.
      通信作者: 马忠权, zqma@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874070, 61674099, 61274067)和索朗光伏材料与器件 R&D 联合实验室基金 (批准号: SS-E0700601) 资助的课题.
      Corresponding author: Ma Zhong-Quan, zqma@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874070, 61674099, 61274067) and the R&D Foundation of SHU-SOEN’s PV Joint Lab (Grant No. SS-E0700601).
    [1]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [2]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109Google Scholar

    [3]

    Battaglia C, Yin X T, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B W, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967Google Scholar

    [4]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X T, Zhang M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902Google Scholar

    [5]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D, Ballif C 2015 Appl. Phys. Lett. 107 081601Google Scholar

    [6]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2016 J. Mater. Res. 32 260

    [7]

    Gao M, Chen D Y, Han B C, Song W L, Zhou M, Song X M, Xu F, Zhao L, Li Y H, Ma Z Q 2018 ACS Appl. Mater. Interfaces 10 27454Google Scholar

    [8]

    Chen D Y, Gao M, Wan Y Z, Li Y H, Guo H B, Ma Z Q 2019 Appl. Surf. Sci. 473 20Google Scholar

    [9]

    Kresse K, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [12]

    Lambert D S, Murphy S T, Lennon A, Burr P A 2017 RSC Adv. 7 53810Google Scholar

    [13]

    Nosé S 1984 J. Chem. Phys. 81 511

    [14]

    Fialko E F, Kikhtenko A V, Goncharov V B, Zamaraev K I 1997 J. Phys. Chem. A 101 8607

    [15]

    Oliveira J A, Almeida W B D, Duarte H A 2003 Chem. Phys. Lett. 372 650Google Scholar

    [16]

    Anez R, Sierraalta A, Díaz L, Bastardo A, Coll D 2015 Appl. Surf. Sci. 335 160Google Scholar

    [17]

    Lu S Q, Wang C, Jin Y X, Bu Q Q, Yang Y 2012 J. Synthetic Crystals 41 1037

    [18]

    Pavlova T V, Zhidomirov G M, Eltsov K N 2018 J. Phys. Chem. C 122 1741

    [19]

    Wan Y Z, Gao M, Li Y, Du H W, Li Y H, Guo H B, Ma Z Q 2017 Appl. Phys. Lett. 110 213902Google Scholar

    [20]

    陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫 2017 66 118201Google Scholar

    Tao P C, Huang Y, Zhou X H, Chen X S, Lu W 2017 Acta Phys. Sin. 66 118201Google Scholar

    [21]

    Coquet R, Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819Google Scholar

    [22]

    Scopel W L, Silva A J R D, Orellana W, Fazzio A 2004 Appl. Phys. Lett. 84 1492Google Scholar

    [23]

    Liu H F, Yang R B, Yang W F, Jin Y J, Lee C J J 2018 Appl. Surf. Sci. 439 583Google Scholar

  • 图 1  MoO3(010)/Si(100)分子动力学模型 (a)扩散反应前; (b)扩散反应后; 灰色球、蓝色球、红色球分别代表钼原子、硅原子和氧原子

    Fig. 1.  The structure model of MoO3(010)/Si(100) interface: (a) Before the ab initio molecular dynamics; (b) after the ab initio molecular dynamics. The grey, blue and red balls stand for Mo atoms, Si atoms, and O atoms, respectively

    图 2  MoO3在Si(100)不同吸附位点的结构示意图 (a) MoO3分子结构及重构后Si(100)表面形貌; (b)−(h) MoO3在吸附位点1−7时优化后的吸附模型; (i)最佳吸附位点7的差分电荷密度(黄色和绿色表示得失电子)

    Fig. 2.  Adsorption configurations of MoO3 on Si (100) surface: (a) The optimized geometries of MoO3 molecule and reconstructed Si (100); (b)−(h) the adsorption configurations of MoO3 adsorbed on the different adsorption sites of Si (100) surface; (i) the difference charge density of MoO3 on the best adsorption site 7 of Si (100)

    图 3  α-SiO2α-MoO3晶胞结构

    Fig. 3.  The framework of α-SiO2 and α-MoO3 unit cells

    图 4  不同生长条件下替位杂质形成能 (a) Si替位Mo; (b) Mo替位Si; 黑线表示晶体硅的化学势, 红线表示富氧条件下硅的化学势

    Fig. 4.  The formation energy for the two substitutional defects: (a) Si in place of a Mo in MoO3; (b) Mo in place of a Si in SiO2. The black curves stand for the bulk Si chemical potential and the red curves stand for the chemical potential for Si in the SiO2 under an oxygen-rich environment

    表 1  MoO3在Si(100)不同吸附位点的吸附能

    Table 1.  The adsorption energy of MoO3 on Si (100)

    吸附位点 1 2 3 4 5 6 7
    吸附能Eab/eV –2.36 –4.21 –5.35 –5.35 –5.19 –5.06 –5.36
    下载: 导出CSV

    表 2  吸附前后体系7结构参数变化及Bader电荷

    Table 2.  The structure parameters and Bader charge of MoO3 adsorbed on the adsorption site 7 of Si (100) surface

    结构参数
    键长/Å 键角/(°)
    Mo—OI Mo—OΠ Mo—OШ OI —Mo— OΠ OΠ—Mo—OШ OШ—Mo—OI
    吸附前 1.73 1.73 1.73 107.73 107.74 107.77
    吸附后 1.95 1.94 1.71 125.62 116.92 116.11
    Bader电荷/e
    SiI SiΠ Mo OI OΠ OШ
    吸附前 3.88 3.98 3.91 6.72 6.67 6.71
    吸附后 3.07 3.21 4.14 7.36 7.35 6.72
    下载: 导出CSV
    Baidu
  • [1]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [2]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109Google Scholar

    [3]

    Battaglia C, Yin X T, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B W, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967Google Scholar

    [4]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X T, Zhang M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902Google Scholar

    [5]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D, Ballif C 2015 Appl. Phys. Lett. 107 081601Google Scholar

    [6]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2016 J. Mater. Res. 32 260

    [7]

    Gao M, Chen D Y, Han B C, Song W L, Zhou M, Song X M, Xu F, Zhao L, Li Y H, Ma Z Q 2018 ACS Appl. Mater. Interfaces 10 27454Google Scholar

    [8]

    Chen D Y, Gao M, Wan Y Z, Li Y H, Guo H B, Ma Z Q 2019 Appl. Surf. Sci. 473 20Google Scholar

    [9]

    Kresse K, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [12]

    Lambert D S, Murphy S T, Lennon A, Burr P A 2017 RSC Adv. 7 53810Google Scholar

    [13]

    Nosé S 1984 J. Chem. Phys. 81 511

    [14]

    Fialko E F, Kikhtenko A V, Goncharov V B, Zamaraev K I 1997 J. Phys. Chem. A 101 8607

    [15]

    Oliveira J A, Almeida W B D, Duarte H A 2003 Chem. Phys. Lett. 372 650Google Scholar

    [16]

    Anez R, Sierraalta A, Díaz L, Bastardo A, Coll D 2015 Appl. Surf. Sci. 335 160Google Scholar

    [17]

    Lu S Q, Wang C, Jin Y X, Bu Q Q, Yang Y 2012 J. Synthetic Crystals 41 1037

    [18]

    Pavlova T V, Zhidomirov G M, Eltsov K N 2018 J. Phys. Chem. C 122 1741

    [19]

    Wan Y Z, Gao M, Li Y, Du H W, Li Y H, Guo H B, Ma Z Q 2017 Appl. Phys. Lett. 110 213902Google Scholar

    [20]

    陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫 2017 66 118201Google Scholar

    Tao P C, Huang Y, Zhou X H, Chen X S, Lu W 2017 Acta Phys. Sin. 66 118201Google Scholar

    [21]

    Coquet R, Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819Google Scholar

    [22]

    Scopel W L, Silva A J R D, Orellana W, Fazzio A 2004 Appl. Phys. Lett. 84 1492Google Scholar

    [23]

    Liu H F, Yang R B, Yang W F, Jin Y J, Lee C J J 2018 Appl. Surf. Sci. 439 583Google Scholar

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理.  , 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [3] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究.  , 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [4] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [5] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究.  , 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [6] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [7] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究.  , 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [8] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [9] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [10] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究.  , 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [11] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [12] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算.  , 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [13] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究.  , 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [14] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [15] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究.  , 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [16] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究.  , 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [17] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究.  , 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [19] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究.  , 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究.  , 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  9372
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-13
  • 修回日期:  2019-03-15
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map