搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理

雷雪玲 朱巨湧 柯强 欧阳楚英

引用本文:
Citation:

第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理

雷雪玲, 朱巨湧, 柯强, 欧阳楚英

First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide

Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying
PDF
HTML
导出引用
  • 锂-氧电池由于高能量密度在后锂离子电池中脱颖而出, 而放电产物过氧化锂缓慢的氧化反应降低了电池的循环性能. 因此, 提高过氧化锂氧化反应动能、降低充电过电位对于实现高能量密度的可逆锂-氧电池具有重要意义. 本文通过第一性原理计算, 对比研究了氧化石墨烯(GO)和硼掺杂氧化石墨烯(BGO)对过氧化锂小团簇(Li2O2)2氧化反应的催化机理. 结果表明, 从(Li2O2)2团簇转移到GO和BGO上的电荷分别为0.59 e和0.96 e, B掺杂提高了电荷转移. 4电子反应过程表明, (Li2O2)2团簇倾向于Li-O2-Li分解路径, 在GO和BGO上反应的速率决定步均是第三步去锂. 在平衡电位下, GO和BGO的充电过电位分别是0.76 V和0.23 V, B掺杂大大降低了锂-氧电池充电过电位. 机理分析表明B与O对(Li2O2)2团簇起到了协同催化的作用.
    Lithium-oxygen batteries stand out among post-lithium-ion batteries due to their theoretically high energy density, while the sluggish reaction kinetics of lithium peroxide reduces the rate performance of the batteries. Therefore, improving the reaction kinetics of the lithium peroxide and then lowering the charge overpotential are of great importance for realizing reversible lithium-oxygen batteries with high energy density. In this work, the catalytic mechanism of graphene oxide (GO) and boron-doped graphene oxide (BGO) on the oxygen evolution reaction of (Li2O2)2 cluster is investigated by first-principles calculations. The results show that the charge transfer from (Li2O2)2 cluster to GO and from (Li2O2)2 cluster to BGO are 0.59 e and 0.96 e, respectively, suggests that B doping improves the charge transfer from the discharged product to the cathode material. The Gibbs free energy of the 4-electron decomposition process shows that the (Li2O2)2 cluster favors the Li-O2-Li decomposition pathway, and the rate-determining step for the reaction on both GO and BGO is the third step, that is, the removal of the third lithium. At the equilibrium potential, the charge overpotential of GO and BGO are 0.76 V and 0.23 V, respectively, showing that B doping greatly reduces the charging overpotential of lithium-oxygen batteries. Moreover, mechanistic analysis shows that B doping enhances the electronic conductance of GO and forms an electron-deficient active center, which facilitates charge transport in cathode and charge transfer from lithium peroxide to cathode materials, thereby reducing the charging overpotential of the lithium-oxygen batteries and improving its cycling performance. The B and O play a synergistic role in catalyzing the oxygen evolution reaction of (Li2O2)2 clusters.
      通信作者: 雷雪玲, xueling@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12164020) 资助的课题.
      Corresponding author: Lei Xue-Ling, xueling@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12164020).
    [1]

    Liu T, Zhao S Y, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X B 2023 Adv. Mater. 35 2208925Google Scholar

    [2]

    Hou X Y, Rong X H, Lu Y X, Hu Y S 2022 Chin. Phys. B 31 098801Google Scholar

    [3]

    Guo Q, Han S, Lu Y X, Chen L, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar

    [4]

    丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜 2022 71 108801Google Scholar

    Ding F X, Rong X H, Wang H B, Yang Y, Hu Z L, Dang R B, Lu Y X, Hu Y S 2022 Acta Phys. Sin. 71 108801Google Scholar

    [5]

    Zhao W Y, Xu L C, Guo Y H, Yang Z, Liu R P, Li X Y 2022 Chin. Phys. B 31 047101Google Scholar

    [6]

    Aurbach D, Mccloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 16128Google Scholar

    [7]

    Zhang X P, Mu X W, Yang S X, Wang P F, Guo S H, Han M, He P, Zhou H S 2018 Energy Environ. Mater. 1 61Google Scholar

    [8]

    Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F W, Huang W 2022 Adv. Sci. 9 e2103954Google Scholar

    [9]

    Wu Z Z, Tian Y H, Chen H, Wang L G, Qian S S, Wu T P, Zhang S Q, Lu J 2022 Chem. Soc. Rev. 51 8045Google Scholar

    [10]

    Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D 2020 Chem. Rev. 120 6626Google Scholar

    [11]

    Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632Google Scholar

    [12]

    Peng Z, Freunberger S A, Chen Y, Bruce P G 2012 Science 337 563Google Scholar

    [13]

    Lyu Z Y, Zhou Y, Dai W R, Cui X H, Lai M, Wang L, Huo F W, Huang W, Hu Z, Chen W 2017 Chem. Soc. Rev. 46 6046Google Scholar

    [14]

    Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549Google Scholar

    [15]

    Hummelshoj J S, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen K S, Luntz A C, Jacobsen K W, Norskov J K 2010 J. Chem. Phys. 132 071101Google Scholar

    [16]

    Kang J, Jung Y S, Wei S H, Dillon A C 2012 Phys. Rev. B 85 035210Google Scholar

    [17]

    Assary R S, Lau K C, Amine K, Sun Y K, Curtiss L A 2013 J. Phys. Chem. C 117 8041Google Scholar

    [18]

    Mccloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M, Luntz A C 2011 J. Am. Chem. Soc. 133 18038Google Scholar

    [19]

    Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Barde F, Novak P, Bruce P G 2011 J. Am. Chem. Soc. 133 8040Google Scholar

    [20]

    Mo Y, Ong S P, Ceder G 2011 Phys. Rev. B 84 205446Google Scholar

    [21]

    Debart A, Paterson A J, Bao J, Bruce P G 2008 Angew. Chem. Int. Ed. Engl. 47 4521Google Scholar

    [22]

    Yu Y, Zhang B, He Y B, Huang Z D, Oh S W, Kim J K 2013 J. Mater. Chem. A 1 1163Google Scholar

    [23]

    Debart A, Bao J, Armstrong G, Bruce P G 2007 J. Power Sources 174 1177Google Scholar

    [24]

    Black R, Lee J H, Adams B, Mims C A, Nazar L F 2013 Angew. Chem. Int. Ed. Engl. 52 392Google Scholar

    [25]

    Cui Y, Wen Z, Liu Y 2011 Energy Environ. Sci. 4 4727Google Scholar

    [26]

    Zhu J, Ren X, Liu J, Zhang W, Wen Z 2015 Acs Catalysis 5 73Google Scholar

    [27]

    Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepro X, Ovalle Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570Google Scholar

    [28]

    Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad Schifferli K, Shao Horn Y 2010 J. Am. Chem. Soc. 132 12170Google Scholar

    [29]

    Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S 2013 Nano Lett. 13 4702Google Scholar

    [30]

    Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar

    [31]

    Cai F, Lei X L 2023 Appl. Surf. Sci. 609 155331Google Scholar

    [32]

    Cai F, Lei X L, Ke Q, Ouyang C Y 2023 J. Phys. Chem. C 127 14232Google Scholar

    [33]

    Sun B, Huang X D, Chen S Q, Munroe P, Wang G X 2014 Nano Lett. 14 3145Google Scholar

    [34]

    Yoo E, Zhou H S 2011 ACS Nano 5 3020Google Scholar

    [35]

    Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W 2013 Sci. Rep. 3 2771Google Scholar

    [36]

    侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英 2019 68 128801Google Scholar

    Hou B P, Gan Z L, Lei X L, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 128801Google Scholar

    [37]

    Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S 2012 ACS Nano 6 1970Google Scholar

    [38]

    Wang H, Zhou Y, Wu D, Liao L, Zhao S L, Peng H L, Liu Z F 2013 Small 9 1316Google Scholar

    [39]

    Ren X D, Zhu J Z, Du F, Liu J J, Zhang W Q 2014 J. Phys. Chem. C 118 22412Google Scholar

    [40]

    Ren X D, Wang B Z, Zhu J Z, Liu J J, Zhang W Q, Wen Z Y 2015 Phys. Chem. Chem. Phys. 17 14605Google Scholar

    [41]

    Hou B P, Lei X L, Zhong S Y, Sun B Z, Ouyang C Y 2020 Phys. Chem. Chem. Phys. 22 14216Google Scholar

    [42]

    Salehi M, Shariatinia Z, Sadeghi A 2019 J. Electroanal. Chem. 832 165Google Scholar

    [43]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [44]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [47]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [48]

    Topsakal M, Ciraci S 2012 Phys. Rev. B 86 205402Google Scholar

  • 图 1  氧化石墨烯和硼掺杂氧化石墨烯的几何结构和电子性质 (a), (b)几何结构, 灰色、红色和粉色小球分别代表C, O和B原子; (c), (d)电子性质, C1, C2和C3与结构图中相一致, 图中插入的是总态密度

    Fig. 1.  Geometric structure and electronic properties of oxide graphene (GO) and B doped oxide graphene (BGO): (a), (b) Geometric structures, grey, red and pink balls represent the C, O and B atoms, respectively; (c), (d) electronic properties, C1, C2 and C3 are consistent with those in the geometric structures, the insert is total density of states (TDOS).

    图 2  氧化石墨烯和硼掺杂氧化石墨烯的电荷密度差分和电子局域密度 (a), (b)电荷密度差分, 黄色和蓝色区域分别表示电荷聚积和电荷消失, 电荷等值面为0.004 e/Å3; (c), (d) 电子局域密度, 从红色到蓝色表示电子由多到少

    Fig. 2.  Charge density difference and electron localization function (ELF) of GO and BGO: (a), (b) Charge density difference, yellow and blue indicate the gain and the loss of electrons, and the isosurface value is 0.004 e/Å3; (c), (d) electron localization function, red to blue indicates more to less electrons.

    图 3  (Li2O2)2团簇在氧化石墨烯(a)和硼掺杂氧化石墨烯(b)上吸附的俯视图和侧视图以及电荷转移, 箭头表示电荷转移方向, 青色和绿色分别代表(Li2O2)2团簇的O原子和Li原子

    Fig. 3.  Top view and side view of (Li2O2)2 cluster adsorbed on the GO (a) and BGO catalysts (b) along with the charge transfer, arrows indicate the direction of charge transfer. The cyan and green represent the O and Li atoms in the (Li2O2)2 cluster, respectively.

    图 4  (Li2O2)2团簇在氧化石墨烯(a)和硼掺杂氧化石墨烯(b)上吸附的电子结构, 图中插入的是总态密度, O1和O2分别代表(Li2O2)2团簇和催化剂上的O

    Fig. 4.  Electronic structures of (Li2O2)2 cluster adsorbed on the GO (a) and BGO catalysts (b), the insert is TDOS. O1 and O2 represent O on (Li2O2)2 cluster and catalysts, respectively.

    图 5  (Li2O2)2团簇在GO (a)和BGO (b)上按照Li-Li-O2路径解离的俯视图和侧视图, 以及相应的吉布斯自由能曲线(c), (d)

    Fig. 5.  Top view and side view of (Li2O2)2 cluster dissociation on GO (a) and BGO (b) following the Li-Li-O2 pathway, and the corresponding Gibbs free energy profiles (c), (d).

    图 6  (Li2O2)2团簇在GO (a)和BGO (b)上按照Li-O2-Li路径解离的俯视图和侧视图, 以及相应的吉布斯自由能曲线(c), (d)

    Fig. 6.  Top view and side view of (Li2O2)2 cluster dissociation on GO (a) and BGO (b) following the Li-O2-Li pathway, and the corresponding Gibbs free energy profiles (c), (d).

    Baidu
  • [1]

    Liu T, Zhao S Y, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X B 2023 Adv. Mater. 35 2208925Google Scholar

    [2]

    Hou X Y, Rong X H, Lu Y X, Hu Y S 2022 Chin. Phys. B 31 098801Google Scholar

    [3]

    Guo Q, Han S, Lu Y X, Chen L, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar

    [4]

    丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜 2022 71 108801Google Scholar

    Ding F X, Rong X H, Wang H B, Yang Y, Hu Z L, Dang R B, Lu Y X, Hu Y S 2022 Acta Phys. Sin. 71 108801Google Scholar

    [5]

    Zhao W Y, Xu L C, Guo Y H, Yang Z, Liu R P, Li X Y 2022 Chin. Phys. B 31 047101Google Scholar

    [6]

    Aurbach D, Mccloskey B D, Nazar L F, Bruce P G 2016 Nat. Energy 1 16128Google Scholar

    [7]

    Zhang X P, Mu X W, Yang S X, Wang P F, Guo S H, Han M, He P, Zhou H S 2018 Energy Environ. Mater. 1 61Google Scholar

    [8]

    Zhang T, Wu N, Zhao Y, Zhang X, Wu J, Weng J, Li S, Huo F W, Huang W 2022 Adv. Sci. 9 e2103954Google Scholar

    [9]

    Wu Z Z, Tian Y H, Chen H, Wang L G, Qian S S, Wu T P, Zhang S Q, Lu J 2022 Chem. Soc. Rev. 51 8045Google Scholar

    [10]

    Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D 2020 Chem. Rev. 120 6626Google Scholar

    [11]

    Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632Google Scholar

    [12]

    Peng Z, Freunberger S A, Chen Y, Bruce P G 2012 Science 337 563Google Scholar

    [13]

    Lyu Z Y, Zhou Y, Dai W R, Cui X H, Lai M, Wang L, Huo F W, Huang W, Hu Z, Chen W 2017 Chem. Soc. Rev. 46 6046Google Scholar

    [14]

    Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549Google Scholar

    [15]

    Hummelshoj J S, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen K S, Luntz A C, Jacobsen K W, Norskov J K 2010 J. Chem. Phys. 132 071101Google Scholar

    [16]

    Kang J, Jung Y S, Wei S H, Dillon A C 2012 Phys. Rev. B 85 035210Google Scholar

    [17]

    Assary R S, Lau K C, Amine K, Sun Y K, Curtiss L A 2013 J. Phys. Chem. C 117 8041Google Scholar

    [18]

    Mccloskey B D, Scheffler R, Speidel A, Bethune D S, Shelby R M, Luntz A C 2011 J. Am. Chem. Soc. 133 18038Google Scholar

    [19]

    Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Barde F, Novak P, Bruce P G 2011 J. Am. Chem. Soc. 133 8040Google Scholar

    [20]

    Mo Y, Ong S P, Ceder G 2011 Phys. Rev. B 84 205446Google Scholar

    [21]

    Debart A, Paterson A J, Bao J, Bruce P G 2008 Angew. Chem. Int. Ed. Engl. 47 4521Google Scholar

    [22]

    Yu Y, Zhang B, He Y B, Huang Z D, Oh S W, Kim J K 2013 J. Mater. Chem. A 1 1163Google Scholar

    [23]

    Debart A, Bao J, Armstrong G, Bruce P G 2007 J. Power Sources 174 1177Google Scholar

    [24]

    Black R, Lee J H, Adams B, Mims C A, Nazar L F 2013 Angew. Chem. Int. Ed. Engl. 52 392Google Scholar

    [25]

    Cui Y, Wen Z, Liu Y 2011 Energy Environ. Sci. 4 4727Google Scholar

    [26]

    Zhu J, Ren X, Liu J, Zhang W, Wen Z 2015 Acs Catalysis 5 73Google Scholar

    [27]

    Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepro X, Ovalle Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570Google Scholar

    [28]

    Lu Y C, Xu Z, Gasteiger H A, Chen S, Hamad Schifferli K, Shao Horn Y 2010 J. Am. Chem. Soc. 132 12170Google Scholar

    [29]

    Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S 2013 Nano Lett. 13 4702Google Scholar

    [30]

    Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J 2013 ACS Nano 7 3532Google Scholar

    [31]

    Cai F, Lei X L 2023 Appl. Surf. Sci. 609 155331Google Scholar

    [32]

    Cai F, Lei X L, Ke Q, Ouyang C Y 2023 J. Phys. Chem. C 127 14232Google Scholar

    [33]

    Sun B, Huang X D, Chen S Q, Munroe P, Wang G X 2014 Nano Lett. 14 3145Google Scholar

    [34]

    Yoo E, Zhou H S 2011 ACS Nano 5 3020Google Scholar

    [35]

    Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W 2013 Sci. Rep. 3 2771Google Scholar

    [36]

    侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英 2019 68 128801Google Scholar

    Hou B P, Gan Z L, Lei X L, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 128801Google Scholar

    [37]

    Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S 2012 ACS Nano 6 1970Google Scholar

    [38]

    Wang H, Zhou Y, Wu D, Liao L, Zhao S L, Peng H L, Liu Z F 2013 Small 9 1316Google Scholar

    [39]

    Ren X D, Zhu J Z, Du F, Liu J J, Zhang W Q 2014 J. Phys. Chem. C 118 22412Google Scholar

    [40]

    Ren X D, Wang B Z, Zhu J Z, Liu J J, Zhang W Q, Wen Z Y 2015 Phys. Chem. Chem. Phys. 17 14605Google Scholar

    [41]

    Hou B P, Lei X L, Zhong S Y, Sun B Z, Ouyang C Y 2020 Phys. Chem. Chem. Phys. 22 14216Google Scholar

    [42]

    Salehi M, Shariatinia Z, Sadeghi A 2019 J. Electroanal. Chem. 832 165Google Scholar

    [43]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [44]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [47]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [48]

    Topsakal M, Ciraci S 2012 Phys. Rev. B 86 205402Google Scholar

  • [1] 白成, 吴用, 辛雨慈, 牟俊峰, 江俊颖, 丁鼎, 夏雷, 余鹏. NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响.  , 2023, 72(10): 108201. doi: 10.7498/aps.72.20230146
    [2] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响.  , 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [5] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究.  , 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [6] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [7] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究.  , 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
    [8] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [10] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [11] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [12] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究.  , 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [13] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [14] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究.  , 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [15] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究.  , 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [16] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究.  , 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [17] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [18] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究.  , 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [19] 侯清玉, 张 跃, 张 涛. 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究.  , 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
    [20] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究.  , 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
计量
  • 文章访问数:  1112
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-02-20
  • 上网日期:  2024-02-29
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map