-
β相氧化镓(β-Ga₂O₃)因其超宽禁带特性、卓越的机械性能和潜在的成本优势,在高功率、高频率及光电微纳机电器件领域展现出极佳的应用前景。本文详细探讨了双端固支结构与圆形鼓面结构的β-Ga₂O₃纳米机电谐振器的能量耗散机制及如何通过设计优化提高其品质因数(Q值)。本文首先通过理论分析和COMSOL软件仿真,深入探讨了Akhiezer效应、热弹性阻尼、支撑阻尼和表面阻尼等能量耗散过程,并制备了器件,采用激光干涉法对β-Ga₂O₃纳米机电谐振器进行了实验验证。结果表明,表面阻尼与支撑阻尼是当前限制β-Ga₂O₃纳米机电谐振器Q值的主要因素,而Akhiezer效应和热弹性阻尼则决定了Q值的上限。本研究不仅阐明了氧化镓微纳机电谐振器能量耗散的复杂机制,也为其带宽调控提供了有价值的指导。Beta-gallium oxide (β-Ga2O3), an emerging ultrawide bandgap (~4.8 eV) semiconductor, exhibits excellent electrical properties and cost advantages, positioning it as a promising candidate for high-power, high-frequency, and optoelectronic applications. Furthermore, its superior mechanical properties, including Young's modulus of 261 GPa, mass density of 5950 kg/m³, and acoustic velocity of 6623 m/s, make it particularly attractive for realizing high-frequency micro- and nanoelectromechanical systems (M/NEMS) resonators. In this paper, we investigate the energy dissipation mechanisms in two distinct β-Ga2O3 NEMS resonator geometries – doubly-clamped beams (10.5-20.8 μm length) and circular drumheads (3.3-5.3 μm diameter) – through theoretical analysis, finite element model (FEM) simulations, and experimental measurements under vacuum (<50 mTorr).
Initially, we explore the dominant energy dissipation mechanisms in resonators, including Akhiezer damping (AKE), thermoelastic damping (TED), clamping loss, and surface loss, using a combined theoretical and FEM approach. Experimentally, we fabricate the resonators by employing mechanical exfoliation coupled with dry transfer techniques, yielding device thicknesses of 30-500 nm as verified by atomic force microscopy (AFM). Resonator dynamics are subsequently characterized using laser interferometry, with the resonance frequencies f(5-75 MHz) and quality factors Q (around 200-1700) acquired by Lorentzian fitting of the resonance spectra, enabling validation of the theoretical and simulation results. Our analysis reveals that surface losses and clamping losses constitute the primary limitations to the Q of current β-Ga2O3 resonators. Conversely, AKE and TED, primarily governed by the material properties and resonator geometry, establish an upper limit for the achievable Q with f·Q product up to 1014 Hz.
Our study provides a comprehensive framework, integrating both theoretical analysis and experimental validation, for understanding the intricate energy dissipation mechanisms within β-Ga2O3 NEMS resonators, and projects optimized Q values through strain engineering and phononic crystal anchors. These findings provide essential guidance for performance optimization and bandwidth modulation of β-Ga2O3 NEMS resonators in high-frequency and high-power applications.
-
Keywords:
- β-phase gallium oxide /
- nanoelectromechanical resonator /
- quality factor /
- energy dissipation mechanism
-
[1] Ning S T, Huang S, Zhang Z Y, Zhao B, Zhang R Q, Qi N, Chen Z Q 2022Phys. Chem. Chem. Phys. 24 12052
[2] Zhou M, Zhou H, Huang S, Si M W, Zhang Y H, Luan T T, Yue H Q, Dang K, Wang C L, Liu Z H, Zhang J C, Hao Y 20232023 International Electron Devices Meeting Francisco, CA, USA, December 9-13, 2023 p1
[3] Chen H, Li Z, Zhang Z Y L, Liu D H, Zeng L R, Yan Y R, Chen D Z, Feng Q, Zhang J C, Hao Y, Zhang C F 2024Semicond. Sci. Technol. 39 063001
[4] Zheng X Q, Zhao H P, Feng P X L 2022Appl. Phys. Lett. 120 040502
[5] Labed M, Sengouga N, Prasad C V, Henini M, Rim Y S 2023Mater. Today Phys. 36 101155
[6] Liang Y, Yu H, Wang H, Zhang H C, Cui T J 2022Chip 1 100030
[7] Li H, Zhou Z H, Zhao Y Z, Li Y 2023Chip 2 100049
[8] Soref R, Leonardis F D 2022Chip 1 100011
[9] Lu C C, Yuan H Y, Zhang H Y, Zhao W, Zhang N E, Zheng Y J, Elshahat S, Liu Y C 2022Chip 1 100025
[10] Wang L M, Zhang P C, Liu Z H, Wang Z H, Yang R 2023Chip 2 100038
[11] Abdolvand R, Bahreyni B, Lee J E Y, Nabki F 2016Micromachines 7 160
[12] Feng T R, Yuan Q, Yu D L, Wu B, Wang H 2022Micromachines 13 2195
[13] Aoust G, Levy R, Bourgeteau B, Traon O L 2015Sens. Actuators A: Phys. 230 126
[14] Sun Y X, Tohmyoh H 2009J. Sound Vib. 319 392
[15] Schmid S, Hierold C 2008J. Appl. Phys. 104 093516
[16] Imboden M, Mohanty P 2014Phys. Rep. 534 89
[17] Rodriguez J, Chandorkar S A, Watson C A, Glaze G M, Ahn C H, Ng E J, Yang Y S, Kenny T W 2019Sci. Rep. 9 2244
[18] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018Appl. Phys. Rev. 5 011301
[19] Bokaian A 1990J. Sound Vib. 142 481
[20] Suzuki H, Yamaguchi N, Izumi H 2009Acoust. Sci. Technol. 30 348
[21] Cimalla V, Foerster C, Will F, Tonisch K, Brueckner K, Stephan R, Hein M E, Ambacher O, Aperathitis E 2006Appl. Phys. Lett. 88 253501
[22] Lee J, Wang Z H, He K L, Shan J, Feng P X L 2014Appl. Phys. Lett. 105 023104
[23] Kunal K, Aluru N R 2011Phys. Rev. B 84 245450
[24] Ghaffari S, Chandorkar S A, Wang S S, Ng E J, Ahn C H, Hong V, Yang Y S, Kenny T W 2013Sci. Rep. 3 3244
[25] Tabrizian R, Rais-Zadeh M, Ayazi F 2009Solid-state Sensors, Actuators & Microsystems Conference Denver, CO, USA, June 21-25, 2009 p2131
[26] Chen Z J, Jia Q Q, Liu W L, Zhu Y F, Yuan Q, Yang J L, Yang F H 2021IEEE MEMS 2021 Virtual Conference Gainesville, FL, USA, January 25-29, 2021 p964
[27] Prabhakar S, Vengallatore S 2007J. Micromech. Microeng. 17 532
[28] Lifshitz R, Roukes M L 2000Phys. Rev. B 61 5600
[29] Sun Y X, Saka M 2010J. Sound Vib. 329 328
[30] Ko J H, Jeong J, Choi J, Cho M 2011Appl. Phys. Lett. 98 171909
[31] Yang J L, Ono T, Esashi M 2002J. Microelectromech. Syst. 11 775
[32] Mohanty P, Harrington D A, Ekinci K L, Yang Y T, Murphy M J, Roukes M L 2002Phys. Rev. B 66 085416
[33] Villanueva L G, Schmid S 2014Phys. Rev. Lett. 113 227201
[34] Zheng X Q, Tharpe T, Enamul Hoque Yousuf S M, Rudawski N G, Feng P X L 2022ACS Appl. Mater. Interfaces 14 36807
[35] Bercioux D, Buchs G, Grabert H, Groning O 2011Phys. Rev. B 83 165439
[36] Yan S H, Liu Z, Tan C K, Zhang X Y, Li S, Shi L, Guo Y F, Tang W H 2023Appl. Phys. Lett. 123 142202
[37] Safieddine F, Hassan F E H, Kazan M 2022J. Solid State Chem. 312 123272
[38] Cheng Z Z, Hanke M, Galazka Z, Trampert A 2018Appl. Phys. Lett. 113 182102
[39] Guo Z, Verma A, Wu X F, Sun F Y, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T F 2015Appl. Phys. Lett. 106 111909
[40] Wang C H, Ning Y H, Zhao W Y, Yi G X, Huo Y 2023Sens. Actuator A: Phys. 359 114456
[41] Li S S, Lin Y W, Xie Y, Ren Z Y, Nguyen C T C 200417th Int. IEEE Micro Electro Mechanical Systems Conf Maastricht, The Netherlands, January 25-29, 2004 p821
[42] Zheng X D, Zhen J P, Qiu J, Liu G J 2023Chin. J. Sci. Instrum. 44 206(in Chinese) [郑贤德,甄嘉鹏,邱静,刘冠军2023仪器仪表学报44 206]
计量
- 文章访问数: 143
- PDF下载量: 8
- 被引次数: 0