搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化镓纳米机电谐振器机械能量耗散途径研究

郑旭骞 巩思豫 耿红尚 郭宇锋

引用本文:
Citation:

氧化镓纳米机电谐振器机械能量耗散途径研究

郑旭骞, 巩思豫, 耿红尚, 郭宇锋

Investigations of mechanical energy dissipation pathways in gallium oxide nanoelectromechanical resonators

ZHENG Xuqian, GONG Siyu, GENG Hongshang, GUO Yufeng
PDF
导出引用
  • β相氧化镓(β-Ga₂O₃)因其超宽禁带特性、卓越的机械性能和潜在的成本优势,在高功率、高频率及光电微纳机电器件领域展现出极佳的应用前景。本文详细探讨了双端固支结构与圆形鼓面结构的β-Ga₂O₃纳米机电谐振器的能量耗散机制及如何通过设计优化提高其品质因数(Q值)。本文首先通过理论分析和COMSOL软件仿真,深入探讨了Akhiezer效应、热弹性阻尼、支撑阻尼和表面阻尼等能量耗散过程,并制备了器件,采用激光干涉法对β-Ga₂O₃纳米机电谐振器进行了实验验证。结果表明,表面阻尼与支撑阻尼是当前限制β-Ga₂O₃纳米机电谐振器Q值的主要因素,而Akhiezer效应和热弹性阻尼则决定了Q值的上限。本研究不仅阐明了氧化镓微纳机电谐振器能量耗散的复杂机制,也为其带宽调控提供了有价值的指导。
    Beta-gallium oxide (β-Ga2O3), an emerging ultrawide bandgap (~4.8 eV) semiconductor, exhibits excellent electrical properties and cost advantages, positioning it as a promising candidate for high-power, high-frequency, and optoelectronic applications. Furthermore, its superior mechanical properties, including Young's modulus of 261 GPa, mass density of 5950 kg/m³, and acoustic velocity of 6623 m/s, make it particularly attractive for realizing high-frequency micro- and nanoelectromechanical systems (M/NEMS) resonators. In this paper, we investigate the energy dissipation mechanisms in two distinct β-Ga2O3 NEMS resonator geometries – doubly-clamped beams (10.5-20.8 μm length) and circular drumheads (3.3-5.3 μm diameter) – through theoretical analysis, finite element model (FEM) simulations, and experimental measurements under vacuum (<50 mTorr).

    Initially, we explore the dominant energy dissipation mechanisms in resonators, including Akhiezer damping (AKE), thermoelastic damping (TED), clamping loss, and surface loss, using a combined theoretical and FEM approach. Experimentally, we fabricate the resonators by employing mechanical exfoliation coupled with dry transfer techniques, yielding device thicknesses of 30-500 nm as verified by atomic force microscopy (AFM). Resonator dynamics are subsequently characterized using laser interferometry, with the resonance frequencies f(5-75 MHz) and quality factors Q (around 200-1700) acquired by Lorentzian fitting of the resonance spectra, enabling validation of the theoretical and simulation results. Our analysis reveals that surface losses and clamping losses constitute the primary limitations to the Q of current β-Ga2O3 resonators. Conversely, AKE and TED, primarily governed by the material properties and resonator geometry, establish an upper limit for the achievable Q with f·Q product up to 1014 Hz.

    Our study provides a comprehensive framework, integrating both theoretical analysis and experimental validation, for understanding the intricate energy dissipation mechanisms within β-Ga2O3 NEMS resonators, and projects optimized Q values through strain engineering and phononic crystal anchors. These findings provide essential guidance for performance optimization and bandwidth modulation of β-Ga2O3 NEMS resonators in high-frequency and high-power applications.

  • [1]

    Ning S T, Huang S, Zhang Z Y, Zhao B, Zhang R Q, Qi N, Chen Z Q 2022Phys. Chem. Chem. Phys. 24 12052

    [2]

    Zhou M, Zhou H, Huang S, Si M W, Zhang Y H, Luan T T, Yue H Q, Dang K, Wang C L, Liu Z H, Zhang J C, Hao Y 20232023 International Electron Devices Meeting Francisco, CA, USA, December 9-13, 2023 p1

    [3]

    Chen H, Li Z, Zhang Z Y L, Liu D H, Zeng L R, Yan Y R, Chen D Z, Feng Q, Zhang J C, Hao Y, Zhang C F 2024Semicond. Sci. Technol. 39 063001

    [4]

    Zheng X Q, Zhao H P, Feng P X L 2022Appl. Phys. Lett. 120 040502

    [5]

    Labed M, Sengouga N, Prasad C V, Henini M, Rim Y S 2023Mater. Today Phys. 36 101155

    [6]

    Liang Y, Yu H, Wang H, Zhang H C, Cui T J 2022Chip 1 100030

    [7]

    Li H, Zhou Z H, Zhao Y Z, Li Y 2023Chip 2 100049

    [8]

    Soref R, Leonardis F D 2022Chip 1 100011

    [9]

    Lu C C, Yuan H Y, Zhang H Y, Zhao W, Zhang N E, Zheng Y J, Elshahat S, Liu Y C 2022Chip 1 100025

    [10]

    Wang L M, Zhang P C, Liu Z H, Wang Z H, Yang R 2023Chip 2 100038

    [11]

    Abdolvand R, Bahreyni B, Lee J E Y, Nabki F 2016Micromachines 7 160

    [12]

    Feng T R, Yuan Q, Yu D L, Wu B, Wang H 2022Micromachines 13 2195

    [13]

    Aoust G, Levy R, Bourgeteau B, Traon O L 2015Sens. Actuators A: Phys. 230 126

    [14]

    Sun Y X, Tohmyoh H 2009J. Sound Vib. 319 392

    [15]

    Schmid S, Hierold C 2008J. Appl. Phys. 104 093516

    [16]

    Imboden M, Mohanty P 2014Phys. Rep. 534 89

    [17]

    Rodriguez J, Chandorkar S A, Watson C A, Glaze G M, Ahn C H, Ng E J, Yang Y S, Kenny T W 2019Sci. Rep. 9 2244

    [18]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018Appl. Phys. Rev. 5 011301

    [19]

    Bokaian A 1990J. Sound Vib. 142 481

    [20]

    Suzuki H, Yamaguchi N, Izumi H 2009Acoust. Sci. Technol. 30 348

    [21]

    Cimalla V, Foerster C, Will F, Tonisch K, Brueckner K, Stephan R, Hein M E, Ambacher O, Aperathitis E 2006Appl. Phys. Lett. 88 253501

    [22]

    Lee J, Wang Z H, He K L, Shan J, Feng P X L 2014Appl. Phys. Lett. 105 023104

    [23]

    Kunal K, Aluru N R 2011Phys. Rev. B 84 245450

    [24]

    Ghaffari S, Chandorkar S A, Wang S S, Ng E J, Ahn C H, Hong V, Yang Y S, Kenny T W 2013Sci. Rep. 3 3244

    [25]

    Tabrizian R, Rais-Zadeh M, Ayazi F 2009Solid-state Sensors, Actuators & Microsystems Conference Denver, CO, USA, June 21-25, 2009 p2131

    [26]

    Chen Z J, Jia Q Q, Liu W L, Zhu Y F, Yuan Q, Yang J L, Yang F H 2021IEEE MEMS 2021 Virtual Conference Gainesville, FL, USA, January 25-29, 2021 p964

    [27]

    Prabhakar S, Vengallatore S 2007J. Micromech. Microeng. 17 532

    [28]

    Lifshitz R, Roukes M L 2000Phys. Rev. B 61 5600

    [29]

    Sun Y X, Saka M 2010J. Sound Vib. 329 328

    [30]

    Ko J H, Jeong J, Choi J, Cho M 2011Appl. Phys. Lett. 98 171909

    [31]

    Yang J L, Ono T, Esashi M 2002J. Microelectromech. Syst. 11 775

    [32]

    Mohanty P, Harrington D A, Ekinci K L, Yang Y T, Murphy M J, Roukes M L 2002Phys. Rev. B 66 085416

    [33]

    Villanueva L G, Schmid S 2014Phys. Rev. Lett. 113 227201

    [34]

    Zheng X Q, Tharpe T, Enamul Hoque Yousuf S M, Rudawski N G, Feng P X L 2022ACS Appl. Mater. Interfaces 14 36807

    [35]

    Bercioux D, Buchs G, Grabert H, Groning O 2011Phys. Rev. B 83 165439

    [36]

    Yan S H, Liu Z, Tan C K, Zhang X Y, Li S, Shi L, Guo Y F, Tang W H 2023Appl. Phys. Lett. 123 142202

    [37]

    Safieddine F, Hassan F E H, Kazan M 2022J. Solid State Chem. 312 123272

    [38]

    Cheng Z Z, Hanke M, Galazka Z, Trampert A 2018Appl. Phys. Lett. 113 182102

    [39]

    Guo Z, Verma A, Wu X F, Sun F Y, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T F 2015Appl. Phys. Lett. 106 111909

    [40]

    Wang C H, Ning Y H, Zhao W Y, Yi G X, Huo Y 2023Sens. Actuator A: Phys. 359 114456

    [41]

    Li S S, Lin Y W, Xie Y, Ren Z Y, Nguyen C T C 200417th Int. IEEE Micro Electro Mechanical Systems Conf Maastricht, The Netherlands, January 25-29, 2004 p821

    [42]

    Zheng X D, Zhen J P, Qiu J, Liu G J 2023Chin. J. Sci. Instrum. 44 206(in Chinese) [郑贤德,甄嘉鹏,邱静,刘冠军2023仪器仪表学报44 206]

  • [1] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用.  , doi: 10.7498/aps.73.20240186
    [2] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响.  , doi: 10.7498/aps.73.20231577
    [3] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响.  , doi: 10.7498/aps.72.20221716
    [4] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , doi: 10.7498/aps.72.20221476
    [5] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列.  , doi: 10.7498/aps.71.20220859
    [6] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布.  , doi: 10.7498/aps.71.20221156
    [7] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , doi: 10.7498/aps.70.20202163
    [8] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数.  , doi: 10.7498/aps.69.20200364
    [9] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响.  , doi: 10.7498/aps.67.20180311
    [10] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析.  , doi: 10.7498/aps.67.20180067
    [11] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨.  , doi: 10.7498/aps.64.094206
    [12] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析.  , doi: 10.7498/aps.64.144202
    [13] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响.  , doi: 10.7498/aps.63.157703
    [14] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器.  , doi: 10.7498/aps.62.054203
    [15] 镓填充二氧化硅纳米管的电子束诱导的反常膨胀(已撤稿).  , doi: 10.7498/aps.61.186102
    [16] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究.  , doi: 10.7498/aps.61.102902
    [17] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性.  , doi: 10.7498/aps.60.097502
    [18] 王甲富, 屈绍波, 徐卓, 夏颂, 张介秋, 马华, 杨一鸣, 吴翔. 电谐振器和磁谐振器构成的左手材料的实验验证.  , doi: 10.7498/aps.59.1847
    [19] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究.  , doi: 10.7498/aps.59.6200
    [20] 高孝纯, 许晶波, 钱铁铮. 广义含时谐振子的精确解和Berry相因数.  , doi: 10.7498/aps.40.25
计量
  • 文章访问数:  143
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map