搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无免靶区域的水下偏振去散射成像

朱叶青 王星 朱竹青

引用本文:
Citation:

基于无免靶区域的水下偏振去散射成像

朱叶青, 王星, 朱竹青
cstr: 32037.14.aps.74.20241582

Underwater polarization de-scattering imaging independent of target-free region

ZHU Yeqing, WANG Xing, ZHU Zhuqing
cstr: 32037.14.aps.74.20241582
PDF
HTML
导出引用
  • 偏振成像技术在去除后向散射光方面是有效的. 针对该技术依赖免靶区域以计算后向散射光信息限制其适用范围和实时成像能力的问题, 本文提出了无免靶区域的偏振成像方法. 该方法结合主动偏振成像和透射率去散射模型, 将相机接收到的图像分解为具有偏振信息和无偏振信息的部分, 具有偏振信息的部分采用主动成像模型计算, 而无偏振信息的部分基于Stokes矢量计算. 同时, 结合透射率校正原理实现去散射. 实验和真实世界水下成像结果表明, 本文方法能够有效去除大部分后向散射光, 且具有速率优势, 能够助力实时复杂条件下的水下成像技术, 在海底资源探测与研究等领域具有广阔的应用前景.
    Underwater optical imaging technology possesses broad application prospects in fields such as marine resource exploration, underwater ecological environment monitoring, and seabed topography detection. The technology employs the polarization characteristics of light, particularly those of the background and target, to achieve a clear image. However, the traditional methods rely on target-free regions to compute the backscattered light information, which is infrequently present in the actual scene captured by the camera. Then the full-space resolution of target information light and backscattered light information are required. At this time, the traditional methods may be difficult to adapt in practical application.In this work, an underwater polarization de-scattering method independent of target-free regions is proposed by combining active polarization imaging and transmittance de-scattering model. Initially, the total light intensity within the camera’s field of view is decomposed into its polarized and unpolarized components. By removing the backscattered light with polarized and unpolarized information from the total light intensity, a clear underwater target can be obtained. Based on the active polarization imaging model, the backscattered light with polarization information is calculated, in which the polarization angle of the backscattered light is considered to be zero in the full-space. Thus, the polarization degree of the target information light occupying the camera’s entire field of view can be derived. According to the polarization correlation, the polarization degree of the backscattered light can be characterized, and the intensity of the backscattered light with polarization information in the camera’s entire field of view can also be obtained. Then the unpolarized component is calculated using the minimum intensity image with Stokes vector transformation. Finally, the underwater scene is obtained by combining the transmittance de-scattering principle and introducing adjustment parameters.Experimental and real-world underwater imaging results demonstrate that the proposed method can effectively remove the majority of the backscattered light and improve the image contrast and entropy, regardless of whether there are target-free regions. Additionally, this method possesses a certain rate advantage, which can facilitate the real-time complex underwater imaging technology.
      通信作者: 朱竹青, zhuqingzhu@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174196)和中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室(批准号: SKLAO2022001A17)资助的课题.
      Corresponding author: ZHU Zhuqing, zhuqingzhu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174196) and the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. SKLAO2022001A17).
    [1]

    Bailey G, Flemming N 2008 Quat. Sci. Rev. 27 2153Google Scholar

    [2]

    Ji T T, Wang G Y 2015 J. Ocean Univ. China 14 255Google Scholar

    [3]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Oceanic Eng. 41 541Google Scholar

    [4]

    Li X B, Han Y L, Wang H Y, Liu T G, Chen S C, Hu H F 2022 Front. Phys. 10 815296Google Scholar

    [5]

    McLean E A, Burris H R, Strand M P 1995 Appl. Opt. 34 4343Google Scholar

    [6]

    Jaffe J S 2005 Opt. Express 13 738Google Scholar

    [7]

    Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [8]

    Le M N, Wang G, Zheng H B, Liu J B, Zhou Y, Xu Z 2017 Opt. Express 25 22859Google Scholar

    [9]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [10]

    管今哥, 朱京平, 田恒, 侯洵 2015 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203Google Scholar

    [11]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [12]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [13]

    Huang B J, Liu T G, Hu H F, Han J H, Yu M X 2016 Opt. Express 24 9826Google Scholar

    [14]

    Hu H F, Zhao L, Huang B J, Li X B, Wang H, Liu T G 2017 IEEE Photonics J. 9 1Google Scholar

    [15]

    卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏 2018 67 184202Google Scholar

    Wei Y, Liu F, Yang K, Han P L, Wang X H, Shao X P 2018 Acta Phys. Sin. 67 184202Google Scholar

    [16]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [17]

    Wei Y, Han P L, Liu F, Liu J P, Shao X J 2021 Chin. Opt. Lett. 19 111101Google Scholar

    [18]

    Wei Y, Han P L, Liu F, Shao X P 2021 Opt. Express 29 22275Google Scholar

    [19]

    Hu H F, Zhao L, Li X B, Wang H, Liu T G 2018 IEEE Photonics J. 10 6900309Google Scholar

    [20]

    封斐, 吴国俊, 吴亚风, 苗宇宏, 刘博 2020 光学学报 40 2111002Google Scholar

    Feng F, Wu G J, Wu Y F, Miao Y H, Liu B 2020 Acta Opt. Sin. 40 2111002Google Scholar

    [21]

    Liu F, Cao L, Shao X P, Han P L, Bin X L 2015 Appl. Opt. 54 8116Google Scholar

    [22]

    Deng J, Zhu J, Li H, Zhang X, Guo F, Hou X 2023 Opt. Lasers Eng. 169 107721Google Scholar

    [23]

    Fang M, Cai Y X, Zhang J R 2024 Opt. Express 32 19801Google Scholar

    [24]

    Wang J J, Wan M J, Cao X Q, Zhang X J, Gu G H, Chen Q 2022 Opt. Express 30 46926Google Scholar

    [25]

    Shen L H, Reda M, Zhang X, Zhao Y Q, Kong S G 2024 IEEE Trans. Geosci. Remote Sens. 62 4202615Google Scholar

    [26]

    Pour A M, Seyedarabi H, Jahromi S H A, Javadzadeh A 2020 IEEE Access 8 136668Google Scholar

    [27]

    Coifman R R, Wickerhauser M V 1992 IEEE Trans. Inform. Theory 38 713Google Scholar

    [28]

    Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar

  • 图 1  不依赖免靶区域的水下偏振去散射步骤

    Fig. 1.  Underwater polarization de-scattering steps independent of target-free regions.

    图 2  水下偏振成像实验系统

    Fig. 2.  Experimental system for underwater polarization imaging.

    图 3  水下偏振成像实验结果 (a1)—(a3) 强度成像结果, 环境浑浊度为25 NTU, 35 NTU和58 NTU; (b1)—(b3) 本文方法成像结果, 黄色和红色矩形框内展示图像细节

    Fig. 3.  Results of underwater polarization imaging experiments: (a1)–(a3) The intensity imaging results with ambient turbidity of 25 NTU, 35 NTU and 58 NTU; (b1)–(b3) the imaging results of the proposed method in this paper, the yellow and red rectangles show the imaging details.

    图 4  无免靶区域不同方法成像结果比较 (a1)—(a3) 强度成像; (b1)—(b3) Schechner的方法; (c1)—(c3) CLAHE方法; (d1)—(d3) PDS方法; (e1)—(e3) 本文方法

    Fig. 4.  Comparison of imaging results using different methods independent of target-free regions: (a1)–(a3) The intensity imaging; (b1)–(b3) Schechner’s method; (c1)–(c3) CLAHE method; (d1)–(d3) PDS method; (e1)–(e3) the proposed method in this paper.

    图 5  存在免靶区域不同方法成像结果比较 (a1)—(a3) 强度成像; (b1)—(b3) Schechner的方法; (c1)—(c3) CLAHE方法; (d1)—(d3) PDS方法; (e1)—(e3) 本文方法

    Fig. 5.  Comparison of imaging results using different methods in the presence of target-free regions: (a1)–(a3) The intensity imaging; (b1)–(b3) Schechner’s method; (c1)–(c3) CLAHE method; (d1)–(d3) PDS method; (e1)–(e3) the proposed method in this paper

    图 6  各种场景不同方法成像结果比较 (a1)—(e1) 强度成像; (a2)—(e2) Schechner的方法; (a3)—(e3) CLAHE方法; (a4)—(e4) PDS方法; (a5)—(e5) 本文方法

    Fig. 6.  Comparison of imaging results using different methods in various scenes: (a1)–(e1) The intensity imaging; (a2)–(e2) Schechner’s method; (a3)–(e3) CLAHE method; (a4)–(e4) PDS method; (a5)–(e5) the proposed method in this paper.

    表 1  图6成像结果定量分析与比较, 最佳值采用加粗标注, 次之采用*标注

    Table 1.  Quantitative analysis and comparison of imaging results from Fig.6, the best values are highlighted in bold, and the second-best values are marked in *.

    FiguresEvaluationIntensitySchechnerCLAHEPDSOur
    (a1)—(a5)Entropy7.08355.20747.16006.37756.9319*
    Contrast0.2933–∞0.36200.70760.4968*
    (b1)—(b5)Entropy7.18157.23577.23347.06897.3007
    Contrast0.3495–∞0.41430.60530.5608*
    (c1)—(c5)Entropy6.65016.85667.31426.09766.9915*
    Contrast0.19960.74760.36250.35730.4523*
    (d1)—(d5)Entropy6.62196.09317.13486.50296.7891*
    Contrast0.1947–∞0.32490.43110.4566
    (e1)—(e5)Entropy6.81636.24587.15516.96627.1863
    Contrast0.2249–∞0.29090.39160.3725*
    下载: 导出CSV

    表 2  图6单次成像平均时间比较, 最短用时采用加粗标注

    Table 2.  Comparison of single imaging average times for Fig. 6, the shortest time is marked in bolded.

    SchechnerPDSOur work
    Average time/s5.3312.731.78
    下载: 导出CSV
    Baidu
  • [1]

    Bailey G, Flemming N 2008 Quat. Sci. Rev. 27 2153Google Scholar

    [2]

    Ji T T, Wang G Y 2015 J. Ocean Univ. China 14 255Google Scholar

    [3]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Oceanic Eng. 41 541Google Scholar

    [4]

    Li X B, Han Y L, Wang H Y, Liu T G, Chen S C, Hu H F 2022 Front. Phys. 10 815296Google Scholar

    [5]

    McLean E A, Burris H R, Strand M P 1995 Appl. Opt. 34 4343Google Scholar

    [6]

    Jaffe J S 2005 Opt. Express 13 738Google Scholar

    [7]

    Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar

    [8]

    Le M N, Wang G, Zheng H B, Liu J B, Zhou Y, Xu Z 2017 Opt. Express 25 22859Google Scholar

    [9]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [10]

    管今哥, 朱京平, 田恒, 侯洵 2015 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203Google Scholar

    [11]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [12]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [13]

    Huang B J, Liu T G, Hu H F, Han J H, Yu M X 2016 Opt. Express 24 9826Google Scholar

    [14]

    Hu H F, Zhao L, Huang B J, Li X B, Wang H, Liu T G 2017 IEEE Photonics J. 9 1Google Scholar

    [15]

    卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏 2018 67 184202Google Scholar

    Wei Y, Liu F, Yang K, Han P L, Wang X H, Shao X P 2018 Acta Phys. Sin. 67 184202Google Scholar

    [16]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [17]

    Wei Y, Han P L, Liu F, Liu J P, Shao X J 2021 Chin. Opt. Lett. 19 111101Google Scholar

    [18]

    Wei Y, Han P L, Liu F, Shao X P 2021 Opt. Express 29 22275Google Scholar

    [19]

    Hu H F, Zhao L, Li X B, Wang H, Liu T G 2018 IEEE Photonics J. 10 6900309Google Scholar

    [20]

    封斐, 吴国俊, 吴亚风, 苗宇宏, 刘博 2020 光学学报 40 2111002Google Scholar

    Feng F, Wu G J, Wu Y F, Miao Y H, Liu B 2020 Acta Opt. Sin. 40 2111002Google Scholar

    [21]

    Liu F, Cao L, Shao X P, Han P L, Bin X L 2015 Appl. Opt. 54 8116Google Scholar

    [22]

    Deng J, Zhu J, Li H, Zhang X, Guo F, Hou X 2023 Opt. Lasers Eng. 169 107721Google Scholar

    [23]

    Fang M, Cai Y X, Zhang J R 2024 Opt. Express 32 19801Google Scholar

    [24]

    Wang J J, Wan M J, Cao X Q, Zhang X J, Gu G H, Chen Q 2022 Opt. Express 30 46926Google Scholar

    [25]

    Shen L H, Reda M, Zhang X, Zhao Y Q, Kong S G 2024 IEEE Trans. Geosci. Remote Sens. 62 4202615Google Scholar

    [26]

    Pour A M, Seyedarabi H, Jahromi S H A, Javadzadeh A 2020 IEEE Access 8 136668Google Scholar

    [27]

    Coifman R R, Wickerhauser M V 1992 IEEE Trans. Inform. Theory 38 713Google Scholar

    [28]

    Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 张建鸣, 李志伟, 刘芳, 李景太, 冒鑫, 程雅苹, 庞捷, 冯鑫茁, 倪四道, 欧阳晓平, 韩然. 多重库仑散射对小尺度物体缪子透射成像精度的影响.  , 2023, 72(2): 021401. doi: 10.7498/aps.72.20221792
    [3] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术.  , 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像.  , 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [5] 霍永胜. 基于偏振的暗通道先验去雾.  , 2022, 71(14): 144202. doi: 10.7498/aps.71.20220332
    [6] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正.  , 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [7] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法.  , 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [8] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术.  , 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [9] 宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊. 基于偏振信息探究水下环境气泡群对目标成像的影响.  , 2021, 70(14): 144201. doi: 10.7498/aps.70.20202152
    [10] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究.  , 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [11] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法.  , 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [12] 程志远, 李治国, 折文集, 夏爱利. 激光相干场成像散斑噪声复合去噪方法.  , 2019, 68(5): 054206. doi: 10.7498/aps.68.20181578
    [13] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法.  , 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [14] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法.  , 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [15] 夏峙, 李秀坤. 水下目标弹性声散射信号分离.  , 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [16] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究.  , 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [17] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度.  , 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [18] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究.  , 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [19] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究.  , 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [20] 毛敏耀, 亢昌军, 王添平, 解健芳, 谭淞生, 王渭源, 章熙康, 金晓峰, 庄志诚. 金刚石薄膜的光学透射率研究.  , 1995, 44(9): 1509-1515. doi: 10.7498/aps.44.1509
计量
  • 文章访问数:  389
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-07
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map