搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Stokes矢量的实时偏振差分水下成像研究

管今哥 朱京平 田恒 侯洵

引用本文:
Citation:

基于Stokes矢量的实时偏振差分水下成像研究

管今哥, 朱京平, 田恒, 侯洵

Real-time polarization difference underwater imaging based on Stokes vector

Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun
PDF
导出引用
  • 偏振差分水下成像能够有效地克服光散射效应造成的图像退化问题, 在水下物体探测与识别领域具有重要应用价值. 传统的偏振差分方法靠光学检偏器的无规则机械转动来实现对散射背景的共模抑制, 限制了其在水下成像过程中的实时探测性能. 本文通过分析偏振差分探测原理来建立偏振差分成像模型, 从理论上提出了基于Stokes矢量的计算偏振差分水下实时成像系统, 并进行了实验验证. 研究结果表明, 基于Stokes矢量的计算偏振差分成像不仅与传统的偏振差分方法具有相同的水下探测效果, 更重要的是可以实现快速成像过程. 该方法可以应用到目前的偏振成像仪器系统, 实现无需人-机互动的自动化实时偏振差分水下成像, 进一步提高水下物体探测与识别的效率.
    Polarization difference imaging technique can effectively solve the underwater image deterioration problem that is caused by the interaction between light and water. Therefore, it has a significant application value in detecting and recognizing underwater target. In a traditional polarization difference imaging system, the object image is carried out by the common-mode rejection of background scattering light. However, the polarization state of the background scattering light is unknown, so the polarization difference imaging is realized by the irregular mechanical rotation of the optical polarization analyzer with two orthogonal polarization orientations. Therefore, it needs more time to determine the optimum detection angle of the polarization analyzer and cannot perform real-time underwater imaging, which restricts the rapid detecting function in the process of underwater imaging. In this paper, the detection principle of underwater polarization difference imaging is considered to exploit the difference in the polarization angle between background scattering light and target light. According to Marius's law, the physical model of polarization difference imaging is that the common-mode rejection of background scattering light will be achieved when the angles between the vibration direction of background and the two orthogonal polarization orientations are 45. Because the Stokes vector can be used to express the polarization angle of light, we propose the principle and construction of a computational polarization difference imaging system for real-time underwater imaging by incorporating the Stokes vector into the established model. It replaces the mechanical rotation of the polarization analyzer in a traditional polarization difference imaging system with the information processing of the Stokes vector. The experimental results show that the proposed method not only has the same effective performance as the conventional polarization difference imaging compared with the regular imaging, but also can improve the blurred imaging performance caused by an underwater scattering effect as well as increase the underwater detection distance. This method realizes rapid underwater target detection and recognition because it saves a large amount of time compared with the traditional one. Further, if we combine this method with the current polarization imaging instruments that capture the Stokes vector instantaneously, then a real-time automatic underwater polarization imaging can improve the efficiency of the underwater target detection and recognition. These findings are helpful for designing and developing the underwater polarization difference imaging systems.
      通信作者: 朱京平, jpzhu@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61205187)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61205187).
    [1]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Sig. Pr. 2010 1

    [2]

    Sun B, Hong J, Sun X B 2014 Chin. Phys. B 23 094201

    [3]

    Zhao X W, Jin T, Chi H, Qu S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [4]

    Weiner A M 2011 Nat. Photon. 5 332

    [5]

    Zhan P P, Tan W J, Si J H, Xu S C, Tong J Y, Hou X 2014 Appl. Phys. Lett. 104 211907

    [6]

    Cao N W, Liu Y Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘玉清, 张玉钧 2000 49 61]

    [7]

    Han J F, Yang K C, Xia M, Sun L Y, Cheng Z, Liu H, Ye J W 2015 Appl. Opt. 54 3294

    [8]

    Bina M, Magatti D, Molteni M, Gatti A, Lugiato L A, Ferri F 2013 Phys. Rev. Lett. 110 083901

    [9]

    Leonard I, Alfalou A, Brosseau C 2013 Opt. Express 21 29283

    [10]

    Rowe M P, Pugh E N, Tyo J S, Engheta N 1995 Opt. Lett. 20 608

    [11]

    Tyo J S, Pugh E N, Engheta N 1998 J. Opt. Soc. Am. A 15 367

    [12]

    Tyo J S 2000 J. Opt. Soc. Am. A 17 1

    [13]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. 31 385

    [14]

    Zhang Z G, Dong F L, Zhang Q C, Chu W G, Qiu K, Cheng T, Gao J, Wu X P 2014 Acta Phys. Sin. 63 184204 (in Chinese) [张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平 2014 63 184204]

    [15]

    Liao Y B 2003 Polarized Light (Beijing: Science Press) p61 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第61页]

    [16]

    Ntziachristos V 2010 Nat. Meth. 7 603

    [17]

    Shi D F, Hu S X, Wang Y J 2014 Opt. Lett. 39 1231

  • [1]

    Schettini R, Corchs S 2010 EURASIP J. Adv. Sig. Pr. 2010 1

    [2]

    Sun B, Hong J, Sun X B 2014 Chin. Phys. B 23 094201

    [3]

    Zhao X W, Jin T, Chi H, Qu S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [4]

    Weiner A M 2011 Nat. Photon. 5 332

    [5]

    Zhan P P, Tan W J, Si J H, Xu S C, Tong J Y, Hou X 2014 Appl. Phys. Lett. 104 211907

    [6]

    Cao N W, Liu Y Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘玉清, 张玉钧 2000 49 61]

    [7]

    Han J F, Yang K C, Xia M, Sun L Y, Cheng Z, Liu H, Ye J W 2015 Appl. Opt. 54 3294

    [8]

    Bina M, Magatti D, Molteni M, Gatti A, Lugiato L A, Ferri F 2013 Phys. Rev. Lett. 110 083901

    [9]

    Leonard I, Alfalou A, Brosseau C 2013 Opt. Express 21 29283

    [10]

    Rowe M P, Pugh E N, Tyo J S, Engheta N 1995 Opt. Lett. 20 608

    [11]

    Tyo J S, Pugh E N, Engheta N 1998 J. Opt. Soc. Am. A 15 367

    [12]

    Tyo J S 2000 J. Opt. Soc. Am. A 17 1

    [13]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. 31 385

    [14]

    Zhang Z G, Dong F L, Zhang Q C, Chu W G, Qiu K, Cheng T, Gao J, Wu X P 2014 Acta Phys. Sin. 63 184204 (in Chinese) [张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平 2014 63 184204]

    [15]

    Liao Y B 2003 Polarized Light (Beijing: Science Press) p61 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第61页]

    [16]

    Ntziachristos V 2010 Nat. Meth. 7 603

    [17]

    Shi D F, Hu S X, Wang Y J 2014 Opt. Lett. 39 1231

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像.  , 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术.  , 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究.  , 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [5] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术.  , 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [6] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究.  , 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [7] 周毅, 陈瑞, 陈雯洁, 马云贵. 空域模拟光学计算器件的研究进展.  , 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [8] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析.  , 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法.  , 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [10] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法.  , 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法.  , 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [12] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究.  , 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [13] 付成花. 微纳粒子光学散射分析.  , 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [14] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [15] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术.  , 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [16] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作.  , 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [17] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析.  , 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [18] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [19] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响.  , 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [20] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响.  , 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
计量
  • 文章访问数:  8961
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-01
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map