搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应门控低信噪比非视域成像

李敏 罗一涵 李泰霖 赵开元 谭毅 谢宗良

引用本文:
Citation:

自适应门控低信噪比非视域成像

李敏, 罗一涵, 李泰霖, 赵开元, 谭毅, 谢宗良

Adaptive gating for low signal-to-noise ratio non-line-of-sight imaging

LI Min, LUO Yihan, LI Tailin, ZHAO Kaiyuan, TAN Yi, XIE Zongliang
PDF
HTML
导出引用
  • 非视域成像技术是对视域外隐藏目标进行光学成像的新兴技术. 由于历经多次漫反射, 信号回波微弱, 门控单光子雪崩二极管(single-photon avalanche diode, SPAD)在低信噪比环境中探测信号发挥了重要作用. 然而, 实际使用门控SPAD进行目标信号探测时, 现有方法多需要借助先验信息进行门宽位置预设, 无法完全避免非目标信号干扰和信号丢失, 并且存在数据采集量大、耗时长等问题. 针对上述问题, 本文利用三角定位原理和少量特征点信息, 提出一种自适应门控算法, 该算法可自动识别回波信号并计算其宽度, 无需额外先验信息或人工干预, 降低数据采集量, 提高处理效率等功能. 同时, 搭建了基于门控SPAD的共焦非视域成像系统, 对提出的算法进行验证. 此外, 本文就门控SPAD对目标信号提升效果和目标成像质量进行了定量评估, 并对比了主流的非视域图像重构算法成像质量. 实验结果表明, 自适应门控算法可以有效识别回波信号, 实现门控参数的自动调节, 并在减少数据采集量、提升处理效率的同时, 提高目标成像质量.
    Non-line-of-sight (NLOS) imaging is an emerging optical imaging technique used for detecting hidden targets outside the line of sight. Due to multiple diffuse reflections, the signal echoes are weak, and gated single-photon avalanche diode (SPAD) plays a pivotal role in signal detection under low signal-to-noise ratio (SNR) conditions. However, when gated SPAD is used for detecting a target signal, existing methods often depend on prior information to preset the gate width, which cannot fully mitigate non-target signal interference or signal loss. Additionally, these methods encountered some problems such as large data acquisition volumes and lengthy processing times. To address these challenges, an adaptive gating algorithm is proposed in this work based on the principle of maximizing the distance from the vertex of a triangle to its base. The algorithm possesses advantages of the linear variation in scan point positions and the echo information from specific feature points. It can automatically identify echo signals and compute their widths without additional prior information or manual intervention. This method reduces the amount of data collected, improves processing efficiency, and has other benefits. Moreover, a confocal NLOS imaging system based on gated SPAD is developed to validate the proposed algorithm. The work further quantitatively evaluates the enhancement of target signal detection and image quality achieved by gated SPAD, and compares its imaging performance with leading NLOS image reconstruction algorithms. Experimental results demonstrate that the adaptive gating algorithm can effectively identify echo signals, facilitate automatic adjustment of gating parameters, and significantly improve target imaging quality while reducing data acquisition volume and enhancing processing efficiency.
  • 图 1  非视域成像与门控工作原理

    Fig. 1.  Working principle of non-line-of-sight imaging and gate control.

    图 2  门控SPAD探测效果 (a) 自由模式下回波信号信息; (b) 门控模式下目标回波信号信息

    Fig. 2.  Detection performance of gated SPAD: (a) Echo signal information in free mode; (b) echo signal information for the third signal in gated mode.

    图 3  中介面回波信号抑制设置示意图 (a)中介面回波信号示意图; (b), (c)常规方法; (d)三角定位方法

    Fig. 3.  Schematic diagram of intermediate echo signal suppression settings: (a) Schematic diagram of the intermediates echo signal; (b), (c) conventional methods; (d) triangulation method.

    图 4  中介面回波信号处理过程 (a) 使用门控SPAD采集的某点回波信号; (b) 该回波信号循环位移后的结果; (c) 左半信号处理结果; (d) 右半信号处理结果

    Fig. 4.  Signal processing procedure for the interface echo signal: (a) Echo signal acquired using gated SPAD at a certain point; (b) result after cyclic shift of the echo signal; (c) result of processing the left half of the signal; (d) result of processing the right half of the signal.

    图 5  扫描面各采集点回波位置变化示意图

    Fig. 5.  Schematic diagram of the change of echo position at each point of the scanning surface.

    图 6  扫描面各扫描点位置推导示意图 (a)扫描阵列示意图; (b), (c)利用特征点计算各扫描点示意图

    Fig. 6.  Schematic diagram of the position of each scan point on the scanning surface: (a) Schematic diagram of the scanning array; (b), (c) schematic diagram of calculating each scanning point using characteristic points.

    图 7  自适应门控控制算法示意图

    Fig. 7.  Schematic diagram of the adaptive gate control algorithm.

    图 8  实际搭建系统 (a)基于SPAD的共焦非视域成像系统; (b)搭建的非视域成像场景

    Fig. 8.  Actual system setup: (a) Confocal non-line-of-sight imaging system based on SPAD; (b) constructed non-line-of-sight imaging scene.

    图 9  中介面信号实际抑制示意图 (a)实际采集中介面回波信号; (b), (c)常规方法; (d)三角定位方法

    Fig. 9.  Schematic diagram of the actual suppression of the intermediary signal: (a) Actual collection of intermediates echo signals; (b), (c) conventional approach; (d) triangulation method.

    图 10  中介面回波信号抑制结果 (a)某点中介面回波信号; (b)某点中介面回波信号识别结果; (c)抑制中介面回波信号后的目标回波信号

    Fig. 10.  Results of adaptive gate width configuration: (a) Echo signal for the intermediate interface midpoint; (b) result of identifying the echo signal of an intermediary surface at a certain point; (c) target echo signal after suppressing the intermediate interface echo signal.

    图 11  中介面回波信号位置与宽度计算结果 (a)左上顶点中介面回波信号位置与宽度计算结果; (b)右上顶点中介面回波信号位置与宽度计算结果; (c)左下顶点中介面回波信号位置与宽度计算结果; (d)右下顶点中介面回波信号位置与宽度计算结果; (e)自适应计算结果和直接计算结果对比图; (f)计算结果细节图

    Fig. 11.  Results of the adaptive gated control algorithm: (a) Calculated position and width of the interface echo signal at the top-left vertex; (b) calculated position and width of the interface echo signal at the top-right vertex; (c) calculated position and width of the interface echo signal at the bottom-left vertex; (d) calculated position and width of the interface echo signal at the bottom-right vertex; (e) comparison of adaptive algorithm results and direct calculation results; (f) detailed plot of the calculated results.

    图 12  一次回波对目标信号作用 (a)—(c)移动门位置示意图; (d)未抑制一次回波的回波信号图; (e)抑制一半一次回波的回波信号图; (f)完全抑制一次回波的回波信号图

    Fig. 12.  Effect of single echo on the target signal: (a)–(c) Schematic diagram of the moving gate position; (d) echo signal diagram without suppressing the single echo; (e) diagram of the echo signal with half of the single echo suppressed; (f) diagram of the echo signal with the single echo completely suppressed.

    图 13  门控SPAD对目标回波信号影响 (a)自由模式下隐藏目标5回波信号; (b)门控模式下隐藏目标5回波信号; (c)自由模式下隐藏目标T回波信号; (d)门控模式下隐藏目标T回波信号

    Fig. 13.  Impact of gated SPAD on target echo signals: (a) Hidden target 5 echo signal in free-running mode; (b) hidden target 5 echo signal in gated mode; (c) hidden target T echo signal in free-running mode; (d) hidden target T echo signal in gated mode.

    图 14  不同模式重建结果对比 (a)自由模式下目标重构结果; (b)固定门宽未抑制一次回波的目标重构结果; (c)固定门宽抑制一次回波的目标重构结果; (d)本文自适应门控控制算法目标重构结果

    Fig. 14.  Comparison of different mode reconstruction results: (a) Reconstruction result under free mode; (b) reconstruction result without suppressing the first echo with fixed gate width; (c) reconstruction result with fixed gate width suppressing the first echo; (d) reconstruction result using the proposed adaptive gate control algorithm in this paper.

    图 15  不同方法重建结果 (a) BP算法; (b) F-K算法; (c) V-W算法; (d) LCT算法; (e)本文自适应门控的LCT算法

    Fig. 15.  Reconstruction results using different methods: (a) BP algorithm; (b) F-K algorithm; (c) V-W algorithm; (d) LCT algorithm; (e) adaptive LCT algorithm in this work.

    表 1  不同方法中介面位置的对比

    Table 1.  Comparison of the results of different method.

    采集信号常规方法
    抑制
    常规方法
    抑制
    三角定位法
    抑制
    起点1103111610901105
    终点1181114811701178
    宽度/ns0.780.320.80.73
    下载: 导出CSV

    表 2  结果对比

    Table 2.  Comparison of results.

    起点终点宽度/ns
    常规方法抑制情形一13330.46
    常规方法抑制情形二1390.02
    三角定位法抑制230.05
    下载: 导出CSV

    表 3  计算结果对比

    Table 3.  Comparison of calculation results.

    起点终点宽度/ns
    自适应计算312732571.31
    实际采集计算311032511.41
    偏差/ns0.170.060.11
    下载: 导出CSV

    表 4  一次回波对目标回波信号的影响

    Table 4.  Impact of primary echo on the target echo signal.

    未抑制一次
    回波信号
    抑制一半一次
    回波信号
    完全抑制一次
    回波信号
    一次回波峰值 36190 8811 0
    目标回波峰值 372 952 805
    信号信噪比 16.79 19.48 28.75
    主观 目标信号被淹没 目标信号可见 目标信号突出
    下载: 导出CSV

    表 5  门控SPAD对目标回波信号的影响

    Table 5.  Impact of gated single-photon avalanche diode on the target echo signal.

    目标5信号
    (自由模式)
    目标5信号(门控模式)目标T信号
    (自由模式)
    目标T信号
    (门控模式)
    目标回波峰值3548025445
    信号信噪比6.7925.546.1523.21
    主观目标波形可见目标波形清晰目标波形可见目标波形清晰
    下载: 导出CSV

    表 6  不同方法采集数据量、耗时对比

    Table 6.  Comparison of data collection volume and time consumption across different methods.

    数据采集量耗时/T
    自由模式一次逐点扫描1
    未抑制中介面回波信号一次逐点扫描1
    抑制中介面回波信号两次逐点扫描2
    自适应门控控制算法一次逐点扫描+
    四个特征点
    ≈1
    下载: 导出CSV

    表 7  不同模式下成像质量对比

    Table 7.  Comparison of imaging quality under different modes.

    自由模式 未抑制中介面
    回波信号
    抑制中介面
    回波信号
    自适应门控
    控制算法
    峰值
    信噪比
    6.94 9.52 10.70 11.4932
    结构
    相似度
    0.56 0.73 0.81 0.8466
    相关系数 0.007 0.31 0.56 0.64885
    主观 无法识别
    目标
    可见目标
    轮廓
    目标轮廓
    清晰
    目标轮廓
    清晰
    下载: 导出CSV

    表 8  不同目标重构质量对比

    Table 8.  Reconstruction quality comparison of different objects.

     评价指标 BPF-KV-WLCT本文
    目标5峰值信噪比7.031110.158.978410.701711.4932
    结构相似度0.64430.78730.74080.81070.8466
    相关系数0.45450.50980.53150.57030.6489
    主观目标模糊可见目标轮廓目标轮廓清晰目标轮廓清晰目标轮廓清晰
    目标L峰值信噪比7.17449.5438.481911.17911.3109
    结构相似度0.66890.77810.78250.85350.8621
    相关系数0.3860.44590.50930.60140.6587
    主观目标模糊可见目标轮廓目标轮廓清晰目标轮廓清晰目标轮廓清晰
    目标H峰值信噪比8.82249.43249.456810.195410.558
    结构相似度0.74770.80710.81630.84170.8564
    相关系数0.60770.48390.50920.60170.6275
    主观目标模糊可见目标轮廓目标轮廓清晰目标轮廓清晰目标轮廓清晰
    目标Plane峰值信噪比9.843611.653311.468712.206611.9239
    结构相似度0.77450.85450.84650.85330.8608
    相关系数0.60190.55410.62230.65240.6325
    主观目标模糊可见目标轮廓目标轮廓清晰目标轮廓清晰目标轮廓清晰
    目标T峰值信噪比7.928511.167311.283112.740112.604
    结构相似度0.68830.81060.83280.88120.877
    相关系数0.65660.67140.73880.71020.7696
    主观目标模糊可见目标轮廓目标轮廓清晰目标轮廓清晰目标轮廓清晰
    下载: 导出CSV
    Baidu
  • [1]

    Kirmani A, Hutchison T, Davis J, Raskar R 2009 IEEE 12th International Conference on Computer Vision Kyoto, Japan, September 29–October 2, 2009 p159

    [2]

    Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G, Raskar R 2012 Nat. Commun. 3 745Google Scholar

    [3]

    Victor A, Diego G, Adrian J 2017 Opt. Express 25 11574Google Scholar

    [4]

    O’Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar

    [5]

    Lindell D B, Wetzstein G, O’Toole M 2019 ACM T. Graphic. 38 116

    [6]

    Xin S, Nousias S, Kutulakos K N, Sankaranarayanan A C, Narasimhan S G, Gkioulekas I 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Long Beach, CA, USA, June 15–19, 2019 p6793

    [7]

    Liu X C, Guillén I, La Manna M, Nam J H, Reza S A, Huu Le T, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar

    [8]

    Young S I, Lindell D B, Girod B, Taubman D, Wetzstein G 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, WA, USA, June 14–19, 2020 p1404

    [9]

    Chen X J, Li M Y, Chen T T, Zhan S Y 2023 Photonics 10 25

    [10]

    Plack M, Callenberg C, Schneider M, Hullin M B 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Waikoloa, HI, USA, January 2–7, 2023 p3066

    [11]

    Shen S Y, Wang Z, Liu P, Pan Z Q, Li R Q, Gao T, Li S Y, Yu J Y 2021 IEEE T. Pattern Anal. 43 2257Google Scholar

    [12]

    吴嘉伟 2021 硕士学位论文 (长沙: 湖南大学)

    Wu J W 2021 M. S. Thesis (Changsha: Hunan University

    [13]

    任禹, 罗一涵, 徐少雄, 马浩统, 谭毅 2021 光电工程 48 84

    Ren Y, Luo Y H, Xu S X, Ma H T, Tan Y 2021 Opto-Electron. Eng. 48 84

    [14]

    唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷 2023 72 014210Google Scholar

    Tang J Y, Luo Y H, Xie Z L, Xia S Y, Liu Y Q, Xu S X, Ma H T, Cao L 2023 Acta Phys. Sin. 72 014210Google Scholar

    [15]

    郑海洋, 罗一涵, 李泰霖, 唐佳瑶, 刘雅卿, 夏诗烨, 吴琼雁, 谢宗良 2023 光电工程 50 101

    Zhen H Y, Luo Y H, Li T L, Tang J Y, Liu Y Q, Xia S Y, Wu Q Y, Xie Z L 2023 Opto-Electron. Eng. 50 101

    [16]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F H, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [17]

    Wu C, Liu J J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X K, Goyal V K, Xu F H, Pan J W 2021 PNAS 118 e2024468118Google Scholar

    [18]

    Liu X T, Wang J Y, Xiao L P, Shi Z Q, Fu X, Qiu L Y 2023 Nat. Commun. 14 3230Google Scholar

    [19]

    Laurenzis M, Velten A 2014 J. Electron. Imag. 23 063003Google Scholar

    [20]

    Buttafava M, Zeman J, Tosi A, Eliceiri K, Velten A 2015 Opt. Express 23 20997Google Scholar

    [21]

    Zhu S Y, Sua Y M, Rehain P, Huang Y P 2021 Opt. Express 29 40865Google Scholar

    [22]

    Zhao J X, Gramuglia F, Keshavarzian P, Toh E H, Tng M, Lim L 2024 IEEE J. Sel. Top. Quant. 30 8000110

    [23]

    Luo Y H, Xie Z L, Xu S X, Ma H T, Ren Y, Cao L China Patent CN202010742670.6 [2020-06-28]

  • [1] 唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷. 基于中频域维纳滤波的非视域成像算法研究.  , doi: 10.7498/aps.72.20221600
    [2] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析.  , doi: 10.7498/aps.66.017201
    [3] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用.  , doi: 10.7498/aps.62.184205
    [4] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究.  , doi: 10.7498/aps.62.030701
    [5] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像.  , doi: 10.7498/aps.61.023401
    [6] 马再如, 隋展, 冯国英, 孙年春, 王屹山, 张彬, 陈建国. 光谱扫描滤波法提升飞秒激光信噪比的理论分析.  , doi: 10.7498/aps.61.074206
    [7] 曾冰, 曾曙光, 张彬, 孙年春, 隋展. 提升啁啾脉冲激光信噪比的扫描滤波方法.  , doi: 10.7498/aps.61.154209
    [8] 李伟昌, 王兆华, 刘成, 滕浩, 魏志义. 飞秒超强激光多通预放大过程中的脉冲信噪比研究.  , doi: 10.7498/aps.60.124210
    [9] 王德江, 匡海鹏. 模拟增益对电荷耦合器件信噪比与动态范围影响的实验研究.  , doi: 10.7498/aps.60.077208
    [10] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响.  , doi: 10.7498/aps.60.064209
    [11] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比.  , doi: 10.7498/aps.59.5418
    [12] 张淳民, 黃伟健, 赵葆常. 新型偏振干涉成像光谱仪噪声分析与评价.  , doi: 10.7498/aps.59.5479
    [13] 李雪霞, 冯久超. 一种混沌信号的盲分离方法.  , doi: 10.7498/aps.56.701
    [14] 宁丽娟, 徐 伟. 光学双稳系统中的随机共振.  , doi: 10.7498/aps.56.1944
    [15] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振.  , doi: 10.7498/aps.56.5623
    [16] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振.  , doi: 10.7498/aps.56.5618
    [17] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究.  , doi: 10.7498/aps.56.6413
    [18] 李 月, 路 鹏, 杨宝俊, 赵雪平. 用一类特定的双耦合Duffing振子系统检测强色噪声背景中的周期信号.  , doi: 10.7498/aps.55.1672
    [19] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振.  , doi: 10.7498/aps.54.2562
    [20] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振.  , doi: 10.7498/aps.54.5027
计量
  • 文章访问数:  465
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2024-12-19
  • 上网日期:  2025-01-02

/

返回文章
返回
Baidu
map