搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振信息探究水下环境气泡群对目标成像的影响

宋强 孙晓兵 刘晓 提汝芳 黄红莲 王昊

引用本文:
Citation:

基于偏振信息探究水下环境气泡群对目标成像的影响

宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊

Exploring target imaging in underwater bubble group environment based on polarization information

Song Qiang, Sun Xiao-Bing, Liu Xiao, Ti Ru-Fang, Huang Hong-Lian, Wang Hao
PDF
HTML
导出引用
  • 水下光学成像是海底探索和目标识别的一个重要方式. 由于海浪、船舶尾流以及海洋生物游动与呼吸等原因, 存在着大量的气泡. 气泡群的光散射作用往往会使水下目标成像效果受限、难以识别, 并且一般的光学技术难以消除气泡对成像的影响. 针对上述问题, 本文先从理论上推导和仿真了入射光线在水下单气泡、气泡群中以及目标表面的光强和偏振信息的变化; 然后在构建了水下气泡实验平台的基础上探究了光源入射角度的改变以及成像波段的变化对气泡环境中目标偏振成像的影响; 研究了不同金属材质目标物的强度和偏振信息的变化趋势; 分析了水下目标在不同气泡群厚度条件下强度和偏振信息的变化趋势; 最后利用偏振特征提取与视觉信息保留的图像融合方法抑制气泡对水下目标成像的影响. 实验结果显示气泡群中目标成像会受到多种因素的影响, 利用偏振图像融合方法会使气泡群受到较好的抑制, 并提高了水下目标的清晰度.
    Underwater optical imaging is an important way to implement the seabed exploration and target recognition. There occur a lot of bubbles due to the sea wave, ship wake, marine creatures’ swimming and breathing. The underwater target imaging effect is often limited by light scattering effect of bubbles, so it is difficult to identify targets, and the general optical technology is difficult to eliminate the bubbles’ influence on imaging. In this article from the bubble theoretical derivation and the bubble simulation, we investigate the changing trend of target’s polarization information under the condition of different light incident angles in the underwater environment, data gathering, data processing and data analysis, by using the polarimetric image fusion method to suppress the influence of bubbles to build a complete target imaging research system under bubble group environment in line with the above several big aspects. According to the above problem, in this paper, the change of light intensity and polarization information of incoming light in underwater single bubble, bubble group and target’s surface are investigated; the target imaging in the bubble group environment with the change of light incident angle and polarization imaging band on the basis of the construction of experimental platform of underwater bubbles is explored; the change trends of strength and polarization information with different metal targets are studied; the change trends of strength and polarization information of underwater target under thickness of different bubble groups are analyzed; finally the underwater target images under the condition of different imaging resolutions and the using of fusion methods of polarization feature extraction and visual information of image to suppress the bubble influence on underwater target imaging are studied. The experimental results show that the target imaging under bubble group environment is influenced by many factors, and using polarimetric image fusion method can well weaken the bubble group’s influence on imaging, and improve the clarity of underwater target. In view of difficult problems about target identification existing in the high-density bubble group environment, we will use energy loss compensation or machine learning method to realize the target recognition and image restoration in the future.
      通信作者: 孙晓兵, xbsun@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFE0201400)、卫星应用共性关键技术项目(批准号: 30-Y20A010-9007-17/18)、高分辨重大专项项目(批准号: GFZX04011805)和中国科学院合肥研究院重点项目(批准号: Y73H9P1801)资助的课题
      Corresponding author: Sun Xiao-Bing, xbsun@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFE0201400), the Common Key Technology Project for Satellite Application of China (Grant No. 30-Y20A010-9007-17/18), the National High Resolution Major Special Project of China (Grant No. GFZX04011805), and the Key Project of Hefei Research Institute of Chinese Academy of Sciences (Grant No. Y73H9P1801)
    [1]

    Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar

    [2]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar

    [3]

    张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)

    [4]

    Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar

    [5]

    Stramski D 1994 SPIE 2258 704

    [6]

    Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar

    [7]

    Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar

    [8]

    Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar

    [9]

    Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar

    [10]

    梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 62 060704Google Scholar

    Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar

    [11]

    Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar

    [12]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [13]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [14]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [15]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

    [16]

    唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 55 2257Google Scholar

    Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar

    [17]

    Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar

    [18]

    Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136

    [19]

    杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar

    Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar

    [20]

    Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar

    [21]

    陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908

    Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908

    [22]

    陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar

    Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar

    [23]

    高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar

    Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar

  • 图 1  Fresnel反射原理图

    Fig. 1.  Principle diagram of the Fresnel reflection.

    图 2  点光源入射到水中气泡界面[16]

    Fig. 2.  Light’s incidence to water bubble interface[16].

    图 3  不同气泡大小和厚度条件下的偏振信息变化趋势

    Fig. 3.  Change trend of polarization information with different bubble size and thickness.

    图 4  不同材质目标表面的S, P方向的反射比率曲线和偏振度变化趋势 (a) 铜材质; (b) 铝材质; (c)铁材质

    Fig. 4.  Reflectance curve of the different target’s surface and the change trend of DOLP: (a) Cuprum; (b) aluminium; (c) iron

    图 5  光子在含有目标物的气泡群中传输过程模拟图

    Fig. 5.  Simulation diagram of photon transport process in bubble group containing target.

    图 6  偏振成像系统和水下气泡实验平台示意图 (a)多波段偏振成像系统; (b) 水下气泡偏振成像系统示意图

    Fig. 6.  Polarization imaging system and underwater bubble experiment platform: (a) Multi-band polarization imaging system; (b) underwater bubble polarization system.

    图 7  不同气泡密度影响下的图像采集 (a)无气泡图像; (b)低密度气泡图像; (c)中密度气泡图像; (d)高密度气泡图像

    Fig. 7.  Image acquisition under the influence of the different density of bubbles: (a) No bubble; (b) low density; (c) medium density; (d) high density.

    图 8  水下气泡成像示意图

    Fig. 8.  Diagram of underwater bubble imaging.

    图 9  不同夹角下的目标强度和偏振信息变化图 (a)不同夹角下的强度辐射图; (b)不同夹角下的偏振度信息图

    Fig. 9.  Strength and polarization information of underwater target under different angles: (a) Intensity figure under different angles; (b) DOP figure under different angles.

    图 10  不同波段条件下的水下目标成像情况 (a)材质1; (b)材质2

    Fig. 10.  The underwater target imaging under the condition of different bands: (a) Material 1; (b) material 2

    图 11  不同材质目标物 (a)铁片; (b)铝片; (c)黄铜片; (d)紫铜片

    Fig. 11.  Object of different material: (a) Iron sheet; (b) aluminum sheet; (c) brass sheet; (d) copper sheet.

    图 12  不同材质目标物强度信息图和偏振信息图 (a)铁片; (b)铝片; (c)黄铜片; (d)紫铜片

    Fig. 12.  Intensity and polarization information of different material: (a) Iron sheet; (b) aluminum sheet; (c) brass sheet; (d) copper sheet.

    图 13  典型金属材质的变化对目标偏振成像的影响 (a)不同材质目标强度信息统计分析; (b)不同材质目标偏振度信息统计分析

    Fig. 13.  Influence of changes of the typical metal material on the target polarization imaging: (a) Target’s strength information statistics and analysis of different material; (b) target’s polarization degree statistics and analysis of different material.

    图 14  不同气泡密度下的强度图和偏振信息图 (a) 强度图; (b) 偏振度图

    Fig. 14.  Figure of intensity and polarization information under different bubble density: (a) Intensity’s figure; (b) DOP’s figure.

    图 15  气泡群厚度对水下气泡目标偏振成像的影响 (a)强度信息变化趋势图; (b)偏振度信息变化趋势图

    Fig. 15.  Bubble group density effects on the underwater bubble target polarization imaging: (a) Trend chart of intensity information; (b) trend chart of DOP information.

    图 16  不同成像距离条件下的水下目标内部细节图 (a) 0.5 m; (b) 0.6 m; (c) 0.7 m; (d) 0.8 m; (e) 0.9 m; (f) 1.0 m

    Fig. 16.  The underwater target details views under the condition of different imaging distance: (a) 0.5 m; (b) 0.6 m; (c) 0.7 m; (d) 0.8 m; (e) 0.9 m; (f) 1.0 m.

    图 17  目标1强度图、偏振融合图与灰度直方图 (a)强度图与对应直方图; (b)偏振融合图与对应直方图

    Fig. 17.  Goal 1’s strength and gray histogram and polarization fusion: (a) Intensity and histogram; (b) polarization fusion and histogram.

    图 18  第一行为中等气泡密度强度图, 第二行为偏振信息融合处理结果图 (a)目标2; (b)目标3; (c)目标4; (d)目标5; (e)目标6

    Fig. 18.  The first behavior indicates intensity figure of bubbles medium density, the second behavior indicates figure of polarization information fusion processing results: (a) Target 2; (b) target 3; (c) target 4; (d) target 5; (e) target 6.

    表 1  水中气泡外界面多次反射、折射后的强度变化

    Table 1.  Intensity of the bubble external interface with multiple reflection and refraction.

    入射角度/(°)水中气泡外界面的光强
    1 (A点)2 (B点)3 (C点)4 (D点)
    50.02010.96030.01933.8662 × 10–4
    100.02010.96020.01933.9015 × 10–4
    150.02020.95990.01944.0710 × 10–4
    200.02070.95900.01984.6056 × 10–4
    250.02200.95670.02076.0192 × 10-4
    300.02510.95090.02309.5371 × 10-4
    350.03280.93640.02870.0019
    400.05420.89710.04360.0045
    450.13420.75700.08880.0158
    460.17610.68780.10620.0223
    470.24660.57860.12620.0334
    480.39450.37820.13530.0552
    48.75(临界值)0.93720.00420.00390.0037
    下载: 导出CSV

    表 2  水中气泡外界面多次反射、折射后的偏振度变化

    Table 2.  The DOP of the bubble external interface with multiple reflection and refraction.

    入射角度/(°)水中气泡外界面的偏振度/%
    1 (A点)2 (B点)3 (C点)4 (D点)
    52.040.081.964.00
    108.360.348.0216.26
    1519.460.8018.6936.81
    2035.941.5234.6162.74
    2557.602.5955.8485.83
    3081.324.1879.8697.72
    3598.206.6697.9599.98
    4094.9710.8693.7899.83
    4563.9419.6350.6786.56
    4654.0822.8235.6675.23
    4742.4027.2317.1555.51
    4827.1734.327.8919.70
    48.75(临界值)1.8150.2548.8847.50
    下载: 导出CSV

    表 3  不同成像分辨率条件下的图像评价指标

    Table 3.  Image evaluation index under the condition of different imaging resolution.

    距离/m信息熵平均梯度边缘强度
    0.55.92631.349912.7868
    0.65.91451.464714.2792
    0.75.93111.494614.6517
    0.86.00081.670316.5898
    0.95.95631.785017.8742
    1.05.95951.722517.2655
    下载: 导出CSV

    表 4  图像评价指标

    Table 4.  Image evaluation index.

    材质类别图像类别信息熵平均梯度边缘强度方差
    目标1原强度图7.55412.600728.59804.9371 × 103
    融合结果图5.363114.9552146.11385.6631 × 103
    目标2原强度图6.02361.107711.9431654.3071
    融合结果图5.648317.6877169.19625.7606 × 103
    目标3原强度图6.06484.137039.8161508.8038
    融合结果图5.633616.3178156.54865.8342 × 103
    目标4原强度图6.08061.130912.2131965.9536
    融合结果图5.778517.5954169.13985.7043 × 103
    目标5原强度图6.55711.422715.52751.0356 × 103
    融合结果图5.721115.0098146.11775.8561 × 103
    目标6原强度图6.21111.429915.63481.2907 × 103
    融合结果图5.517317.9909174.82086.0343 × 103
    下载: 导出CSV
    Baidu
  • [1]

    Trevorrow M V, Vage S, Farmer D M 1994 J. Acoust Soc. Am. 95 1922Google Scholar

    [2]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83Google Scholar

    [3]

    张建生 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Zhang J S 2001 Ph. D. Dissertation (Xi’an: Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics) (in Chinese)

    [4]

    Davis G E 1955 J. Opt. Soc. Am. 45 572Google Scholar

    [5]

    Stramski D 1994 SPIE 2258 704

    [6]

    Maston P L 1979 J. Opt. Soc. Am. 69 1205Google Scholar

    [7]

    Dean C E, Maston P L 1991 Appl. Opt. 30 4764Google Scholar

    [8]

    Zhang X, Lewis M, Lee M E G, Johnson B, Korotaev G K 2002 Limnol. Oceangr. 47 1273Google Scholar

    [9]

    Konkhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47Google Scholar

    [10]

    梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东 2013 62 060704Google Scholar

    Liang S Y, Wang J A, Zong S G, Wu R H, Ma Z G, Wang X Y, Wang L D 2013 Acta Phys. Sin. 62 060704Google Scholar

    [11]

    Zhao H, Li X C, Yang Q, Wu C X, Lei Z 2019 Infrared Laser Eng. 48 0326001Google Scholar

    [12]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [13]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570Google Scholar

    [14]

    Huang B J, Liu T G, Hu H F 2016 Opt. Express 24 9826Google Scholar

    [15]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

    [16]

    唐远河, 解光勇, 刘汉臣, 邵建斌, 马琦, 刘会平, 宁辉, 杨彧, 严成海 2006 55 2257Google Scholar

    Tang Y H, Xie G Y, Liu H C, Shao J B, Ma Q, Liu H P, Ning H, Yang Y, Yan C H 2006 Acta Phys. Sin. 55 2257Google Scholar

    [17]

    Jessica CR, Scott A P, Steve L J 2005 Opt. Express 13 4420Google Scholar

    [18]

    Siegel R, Howell J R, Siegel R 1992 Thermal Radiation Heat Transfer (3rd Ed.) (New York: Hemisphere Publishing) pp93−136

    [19]

    杨雨迎, 崔占忠, 王玲, 魏双成 2013 科技导报 31 28Google Scholar

    Yang Y Y, Cui Z Z, Wang L, Wei S C 2013 Science & Technology Review 31 28Google Scholar

    [20]

    Deane G B, Stokes M D 1999 J. Phys. Oceanogr. 29 1393Google Scholar

    [21]

    陈杰, 邓敏, 肖鹏峰, 杨敏华, 梅小明, 刘慧敏 2011 遥感学报 15 908

    Chen Jie, Deng M, Xiao P F, Yang M H, Mei X M, Liu H M 2011 Journal of Remote Sensing 15 908

    [22]

    陈卫, 孙晓兵, 乔延利, 陈斐楠, 殷玉龙 2020 红外与毫 米波学报 39 523Google Scholar

    Chen W, Sun X B, Qiao Y L, Chen F N, Ying Y L 2020 J. Infrared Millim. Waves 39 523Google Scholar

    [23]

    高隽, 毕冉, 赵录建, 范之国 2017 光学精密工程 25 2212Google Scholar

    Gao J, Bi R, Zhao L J, Fan Z G 2017 Optics and Precision Eng. 25 2212Google Scholar

  • [1] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究.  , 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法.  , 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [3] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法.  , 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [4] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法.  , 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [5] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究.  , 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [6] 窦健泰, 高志山, 马骏, 袁操今, 杨忠明. 基于图像信息熵的ptychography轴向距离误差校正.  , 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [7] 陈平, 阴晓刚, 潘晋孝, 韩焱. 递变能量X射线高动态融合图像的灰度表征算法研究.  , 2014, 63(20): 208703. doi: 10.7498/aps.63.208703
    [8] 冯鑫, 李川, 胡开群. 基于深度玻尔兹曼模型的红外与可见光图像融合.  , 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [9] 陈善静, 胡以华, 孙杜娟, 徐世龙. 基于高/多光谱图像空天一体融合仿真方法.  , 2013, 62(20): 204201. doi: 10.7498/aps.62.204201
    [10] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究.  , 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [11] 赵文达, 赵建, 续志军. 基于结构张量的变分多源图像融合.  , 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [12] 焦一鸣, 周艳, 李永高, 李长征. 如何从偏振仪测量信息中获得q分布.  , 2012, 61(21): 215201. doi: 10.7498/aps.61.215201
    [13] 赵辽英, 马启良, 厉小润. 基于HIS 小波变换和MOPSO的全色与多光谱图像融合.  , 2012, 61(19): 194204. doi: 10.7498/aps.61.194204
    [14] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法.  , 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [15] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法.  , 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [16] 王娜, 陈克安. 水下噪声音色属性回归模型及其在目标识别中的应用.  , 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [17] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究.  , 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [18] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型.  , 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [19] 张 闯, 柏连发, 张 毅. 基于灰度空间相关性的双谱微光图像融合方法.  , 2007, 56(6): 3227-3233. doi: 10.7498/aps.56.3227
    [20] 宗晓萍, 徐 艳, 董江涛. 多信息融合的模糊边缘检测技术.  , 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
计量
  • 文章访问数:  5445
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-03-06
  • 上网日期:  2021-07-13
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map