搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下目标弹性声散射信号分离

夏峙 李秀坤

引用本文:
Citation:

水下目标弹性声散射信号分离

夏峙, 李秀坤

Separation of elasto acoustic scattering of underwater target

Xia Zhi, Li Xiu-Kun
PDF
导出引用
  • 水下目标弹性声散射与其他声散射成分在时域和频域上均存在混叠, 现有信号处理方法受分辨力限制无法在混叠状态下识别目标弹性声散射特征. 针对这个问题, 提出了一种目标弹性声散射信号分离方法. 以目标回波亮点模型为基础, 分析了线性调频信号入射时目标声散射成分的信号特性, 提出了一种目标声散射成分向单频信号的映射方法, 并理论推导出了目标声散射结构与映射结果之间的线性对应关系, 实现了通过窄带滤波分离出目标弹性声散射成分. 仿真与消声水池实验数据处理结果表明, 该方法基本可以完全分离出目标回波信号中的弹性声散射成分, 分离出的弹性声散射具有与理论一致的信号特征, 验证了该分离方法的有效性.
    An elastic acoustic scattering by underwater target could be mixed with other acoustic scattering components in both time and frequency domains, and the existing signal processing methods could not discriminate the elastic feature of target in the mixed status. For solving this problem, a signal separation method for elastic acoustic scattering is proposed. Based on the highlight model of target echo, the characters of the target acoustic scattering signal when the linear frequency modulation signal is transmitted, are analyzed, and a method for mapping the acoustic scattering signal of the target to a single frequency signal is proposed. Theoretical derivation shows that there is a simple linear relationship between the acoustic scattering structure of the target and the mapped result, then the elastic acoustic scattering signal of the target can be separated by a narrow-band filtering. Simulation results show that the correlation coefficient between the separated target acoustic scattering and the orginal simulation signals are about 0.99, indicating that the acoustic scattering components in the simulation target echo can be wholly separated. Experimental data-processing results of the target acoustic scattering measureflent in an anechoic pool show that the mid-frequency enhancement effect can be observed in the spectrum of the separated elastic acoustic scattering, and every target acoustic scattering component can be recognized on the time-frequency distribution of separately processed target echo. There is a bowl-shape interference fringe on the angle-spectrum of the separated target elastic acoustic scattering components which is consistent with the theoretical signal’s feature of the elastic acoustic scattering, and the effectiveness of the separation method proposed is proven.
    • 基金项目: 国家自然科学基金(批准号: 51279033)和黑龙江省自然科学基金(批准号: F201346)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51279033), and the Natural Science Foundation of Heilongjiang Province, China(Grant No. F201346).
    [1]

    Pan A, Fan J, Zhuo L K 2013 Acta Phys. Sin. 62 24301 (in Chinese) [潘安, 范军, 卓琳凯 2013 62 24301]

    [2]

    Pan A, Fan J, Zhuo L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 61 214301]

    [3]

    Li L, Wen J H, Cai L, Zhao H G, Wen X S 2013 Chin. Phys. B 22 014301

    [4]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [5]

    Cite N, Chati F, Decultot D, Leon F, Maze G 2012 J. Acoustic Soc. Am. 131 4233

    [6]

    Marston P L, Sun N H 1992 J. Acoustic Soc. Am. 92 3315

    [7]

    Zhang L G, Sun N H, Marston P L 1992 J. Acoustic Soc. Am. 91 1862

    [8]

    Marston P L, Sun N H 1995 J. Acoustic Soc. Am. 97 777

    [9]

    Bao X L 1993 J. Acoustic Soc. Am. 94 1461

    [10]

    Morse S F, Marston P L, Kaduchak G 1998 J. Acoustic Soc. Am. 103 785

    [11]

    Bucaro J, Simpson H, Kraus L, Dragonette L, Yoder T, Houston B 2009 J. Acoustic Soc. Am. 126 2315

    [12]

    Anderson S D, Sabra K G, Zakharia M E, Sessarego J P 2012 J. Acoustic Soc. Am. 131 164

    [13]

    Bucaro J, Houston B, Saniga M, Dragonette L, Yoder T, Dey S, Kraus L, Carin L 2008 J. Acoustic Soc. Am. 123 738

    [14]

    Waters Z, Simpson H, Sarkissian A, Dey S, Houston B, Bucaro J, Yoder T 2012 J. Acoustic Soc. Am. 132 3076

    [15]

    Bucaro J A, Waters Z J, Houston B H, Simpson H J, Sarkissian A, Dey S, Yoder T J 2012 J. Acoustic Soc. Am. 132 3614

    [16]

    Decultot D, Lietard R, Maze G 2010 J. Acoustic Soc. Am. 127 1328

    [17]

    Sabra K G, Anderson S D 2014 J. Acoustic Soc. Am. 135 2821

    [18]

    Tang W L 1994 Acta Acustica 19 92 (in Chinese) [汤渭霖 1994 声学学报 19 92]

  • [1]

    Pan A, Fan J, Zhuo L K 2013 Acta Phys. Sin. 62 24301 (in Chinese) [潘安, 范军, 卓琳凯 2013 62 24301]

    [2]

    Pan A, Fan J, Zhuo L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 61 214301]

    [3]

    Li L, Wen J H, Cai L, Zhao H G, Wen X S 2013 Chin. Phys. B 22 014301

    [4]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [5]

    Cite N, Chati F, Decultot D, Leon F, Maze G 2012 J. Acoustic Soc. Am. 131 4233

    [6]

    Marston P L, Sun N H 1992 J. Acoustic Soc. Am. 92 3315

    [7]

    Zhang L G, Sun N H, Marston P L 1992 J. Acoustic Soc. Am. 91 1862

    [8]

    Marston P L, Sun N H 1995 J. Acoustic Soc. Am. 97 777

    [9]

    Bao X L 1993 J. Acoustic Soc. Am. 94 1461

    [10]

    Morse S F, Marston P L, Kaduchak G 1998 J. Acoustic Soc. Am. 103 785

    [11]

    Bucaro J, Simpson H, Kraus L, Dragonette L, Yoder T, Houston B 2009 J. Acoustic Soc. Am. 126 2315

    [12]

    Anderson S D, Sabra K G, Zakharia M E, Sessarego J P 2012 J. Acoustic Soc. Am. 131 164

    [13]

    Bucaro J, Houston B, Saniga M, Dragonette L, Yoder T, Dey S, Kraus L, Carin L 2008 J. Acoustic Soc. Am. 123 738

    [14]

    Waters Z, Simpson H, Sarkissian A, Dey S, Houston B, Bucaro J, Yoder T 2012 J. Acoustic Soc. Am. 132 3076

    [15]

    Bucaro J A, Waters Z J, Houston B H, Simpson H J, Sarkissian A, Dey S, Yoder T J 2012 J. Acoustic Soc. Am. 132 3614

    [16]

    Decultot D, Lietard R, Maze G 2010 J. Acoustic Soc. Am. 127 1328

    [17]

    Sabra K G, Anderson S D 2014 J. Acoustic Soc. Am. 135 2821

    [18]

    Tang W L 1994 Acta Acustica 19 92 (in Chinese) [汤渭霖 1994 声学学报 19 92]

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性.  , 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 李朝锋, 王振, 刘欣宇, 杨苏辉, 徐震, 樊超阳. 基于VMD-ICA的水下激光雷达抗散射信号处理方法.  , 2024, 73(9): 094203. doi: 10.7498/aps.73.20231993
    [3] 荆晨轩, 时胜国, 杨德森, 张姜怡, 李松. 水下低频振荡涡流场声散射调制机理与特性研究.  , 2023, 72(1): 014302. doi: 10.7498/aps.72.20221748
    [4] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性.  , 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [5] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射.  , 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [6] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制.  , 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [7] 冯西安, 张杨梅. 任意复包络信号的匀速运动目标回波脉间补偿及相干积累.  , 2018, 67(11): 110202. doi: 10.7498/aps.67.20172203
    [8] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究.  , 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [9] 张培珍, 李秀坤, 范军, 王斌. 局部固体填充的水中复杂目标声散射计算与实验.  , 2016, 65(18): 184301. doi: 10.7498/aps.65.184301
    [10] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究.  , 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [11] 胡珍, 范军, 张培珍, 吴玉双. 水下掩埋目标的散射声场计算与实验.  , 2016, 65(6): 064301. doi: 10.7498/aps.65.064301
    [12] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取.  , 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [13] 李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性.  , 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [14] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计.  , 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [15] 杨立学, 陈克安, 张冰瑞, 梁雍. 基于不相似度评价的水下声目标分类与听觉特征辨识.  , 2014, 63(13): 134304. doi: 10.7498/aps.63.134304
    [16] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究.  , 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [17] 王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国. 基于高斯光束特性的Mie散射大气激光雷达回波近场信号校正研究.  , 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [18] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应.  , 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [19] 陶昉, 张泰永, 牛世文, 勾成, 施仲坚, 林泉. 中子非弹性散射对Bi12GeO20和Bi12SiO20旋声性的研究.  , 1986, 35(2): 196-202. doi: 10.7498/aps.35.196
    [20] 钱祖文. 关于声散射声.  , 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  6982
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-18
  • 修回日期:  2014-11-06
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map