-
采用基于密度泛函理论的第一性原理计算方法,讨论了不同浓度硼(B)掺杂石墨烯/蓝磷异质结BiGr/BP (i=0,1,2,3,4)的几何结构、稳定性、电子性质以及对镁(Mg)的吸附能力。结果表明,B掺杂后,异质结保持结构稳定,费米能级下移且贯穿多条能带,材料导电性增强。随着掺杂浓度的增加,材料对Mg的吸附能力逐渐增强。当B掺杂浓度i=4(原子个数)时,B4Gr/BP保持热力学稳定,展现出优异的导电性,较强的Mg吸附能力(-3.38 eV),较低的扩散势垒(0.47 eV),理想的平均开路电压(0.37 V)以及合适的理论容量(286.04 mAh/g)。这表明,B掺杂能有效改善石墨烯/蓝磷(Gr/BP)储镁性能,特别是B4Gr/BP性能优异,有望成为镁离子电池阳极的候选材料。Magnesium-ion batteries (MIBs) are regarded as a promising alternative to lithium-ion batteries (LIBs) due to their material abundance, cost-effectiveness, and improved safety. The development of high-performance anode materials is crucial for the advancement of MIBs. In this work, the feasibility of boron-doped graphene/blue phosphorene heterojunctions BiGr/BP (i=0,1,2,3,4) as potential anode materials for MIBs is systematically investigated using density functional theory. Our results show that the average binding energies of BiGr/BP (i=0,1,2,3,4) are negative, suggesting their suitability for experimental synthesis. Band structure and density of states analyses reveal that BiGr/BP(i=0,1,2,3,4) exhibit high conductivity, as the 2p orbitals of carbon and boron dominantly contribute to the density of states at the Fermi level. Magnesium (Mg) adsorption capacity interactions between the heterojunctions and Mg. At the highest doping concentration(i=4), the adsorption energy of Mg adsorbed in the interlayer is -3.38 eV, demonstrating substantial potential for Mg storage. Ab initio molecular dynamics (AIMD) simulations at 300 K show minor fluctuations in total energy, confirming the thermal stability of B4Gr/BP. Climbing image nudged elastic band (CI-NEB) method is used to determine two Mg diffusion pathways in the B4Gr/BP interlayer. Along Path II, the maximum diffusion barrier is 0.47 eV, suggesting rapid Mg diffusion in the B4Gr/BP interlayer. The average open-circuit voltage is 0.37 V, ensuring the safety of the charge-discharge process. The theoretical capacity is 286.04 mAh/g, which is twice that of the B4Gr/MoS2 system. In summary, boron doping significantly enhances the Mg storage capacity. Specifically, B4Gr/BP appears to be a promising candidate for high-performance anodes in MIBs, owing to its excellent stability, conductivity, Mg storage capacity, and electrochemical properties.
-
Keywords:
- Boron-doped Gr/BP /
- Magnesium-ion batteries /
- First-principles
-
[1] Chen W D, Liang J, Yang Z H, Li G 2019 Energy Proc. 1584363
[2] Tarascon J M, Armand M 2001 Nature 414359
[3] Lv C W, Qin M L, He Y P, Wu M Q, Zhu Q S, Wu S Y 2025 Solid State Ionics 423116820
[4] Durajski A P, Kasprzak G T 2023 Phys. B 660414902
[5] Wang Y Q, Yang Z, Song J Y 2025 Mol. Phys. 24 e2482678
[6] Liu L L 2022 M.S. Thesis (Shijiazhuang: Hebei Normal University) (in Chinese) [刘立林2022硕士学位论文(石家庄: 河北师范大学)]
[7] Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X, Wang Y 2021 Rare Met. 40290
[8] Li X Y, Gao G X, Gao Q, Liu C S, Ye X J 2024 Acta Phys. Sin. 73118201(in Chinese) [李欣悦, 高国翔, 高强, 刘春生, 叶小娟2024 73118201]
[9] Raccichini R, Varzi A, Passerini S, B S 2015 Nat. Mater. 14271
[10] Qiu Z, Cao F, Pan G, Li C, Chen M, Zhang Y, He X, Xia Y, Xia X, Zhang W 2023 ChemPhysMater 2267
[11] Zhang L J, Zhang T H, Wang C, Jin W, Li Y, Wang H, Ding C C, Wang Z Y 2025 Chem. Phys. 594112664
[12] Qi J Q, Li Q, Huang M Y, Ni J J, Sui Y W, Meng Q K, Wei F X, Zhu L, Wei W Q 2024 Colloids Surf. A Physicochem. Eng. Asp. 683132998
[13] Fan K M, Tang J, Wu S Y, Yang C F, Hao J B 2017 Phys. Chem. Chem. Phys. 19267
[14] Cheng J, Gao L F, Li T, Mei S, Wang C, Wen B, Huang W C, Li C, Zheng G P, Wang H, Zhang H. 2020 Nano-Micro Lett. 121
[15] Sibari A, Marjaoui A, Lakhal, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180253
[16] Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 1713921
[17] Aierken Y, Cakir D, Sevik C, Peeters F M 2015 Phys. Rev. B 92081408
[18] Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 1198662
[19] Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H, Wang S Y 2017 Small 131700758
[20] Kaddar Y, Zhang W, Enriquez H, Dappe Y J, Bendounan A, Dujardin G, Mounkachi O, El Kenz A, Benyoussef A, Kara A, Oughaddou H 2023 Adv. Funct. Mater. 332213664
[21] Li Y, Wu W T, Ma F 2019 J. Mater. Chem. A 7611
[22] Mukherjee S, Kaloni T P 2012 J. Nano. Res. 141
[23] Kresse G, Furthmüller J 1996 Phys. Rev. B 5411169
[24] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 615
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865
[26] Blöchl P E 1994 Phys. Rev. B 5017953
[27] Steinmann S N, Corminboeuf C 2010 J. Chem. Theory Comput. 61990
[28] Nosé S 2002 Mol. Phys. 100191
[29] Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 1139901
[30] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81109
[31] Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91115433
[32] Suragtkhuu S, Bat-Erdene M, Bati A S R, Shapter J G, Davaasambuu S, Batmunkh M 2020 J. Mater. Chem. A 820446
[33] Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 59961
[34] Bo T, Liu P F, Xu J P, Zhang J R, Chen Y B, Eriksson O, Wang F W, Wang B T 2018 Phys. Chem. Chem. Phys. 2022168
[35] Sun Z M, Yuan M W, Yang H, Lin L, Sun G B, Yang X J 2021 Appl. Surf. Sci. 543148790
[36] Pozzo M, Alfè D 2008 Phys. Rev. B 77104103
[37] Shomali E, Sarsari I A, Tabatabaei F, Mosaferi M, Seriani N 2019 Comput. Mater. Sci. 163315
[38] Obaidullah, Habiba U, Piya A A, Daula Shamim S U 2023 AIP Adv. 1311
[39] Zhu J D Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)[朱家铎新型磷烯二维材料异质结设计与物性调控研究博士学位论文(西安:西安电子科技大学)]
[40] Zhang C, Jiao Y, He T, Ma F, Kou L, Liao T, Bottle S, Du A 2017 Phys. Chem. Chem. Phys. 1925886
[41] Eames C, Islam M S. 2014 J. Am. Chem. Soc. 13616270
计量
- 文章访问数: 51
- PDF下载量: 1
- 被引次数: 0