搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂石墨烯/蓝磷异质结作为镁离子电池阳极的第一性原理研究

唐婧 范开敏 王坤 侯金瑛 史丹丹 东红

引用本文:
Citation:

硼掺杂石墨烯/蓝磷异质结作为镁离子电池阳极的第一性原理研究

唐婧, 范开敏, 王坤, 侯金瑛, 史丹丹, 东红

First-principles study of Boron-doped Graphene/blue-phosphorus heterojunction as anode materials for magnesium-ion batteries

TANG Jing, FAN Kaimin, WANG Kun, HOU Jinying, SHI Dandan, DONG Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法,讨论了不同浓度硼(B)掺杂石墨烯/蓝磷异质结BiGr/BP (i=0,1,2,3,4)的几何结构、稳定性、电子性质以及对镁(Mg)的吸附能力。结果表明,B掺杂后,异质结保持结构稳定,费米能级下移且贯穿多条能带,材料导电性增强。随着掺杂浓度的增加,材料对Mg的吸附能力逐渐增强。当B掺杂浓度i=4(原子个数)时,B4Gr/BP保持热力学稳定,展现出优异的导电性,较强的Mg吸附能力(-3.38 eV),较低的扩散势垒(0.47 eV),理想的平均开路电压(0.37 V)以及合适的理论容量(286.04 mAh/g)。这表明,B掺杂能有效改善石墨烯/蓝磷(Gr/BP)储镁性能,特别是B4Gr/BP性能优异,有望成为镁离子电池阳极的候选材料。
    Magnesium-ion batteries (MIBs) are regarded as a promising alternative to lithium-ion batteries (LIBs) due to their material abundance, cost-effectiveness, and improved safety. The development of high-performance anode materials is crucial for the advancement of MIBs. In this work, the feasibility of boron-doped graphene/blue phosphorene heterojunctions BiGr/BP (i=0,1,2,3,4) as potential anode materials for MIBs is systematically investigated using density functional theory. Our results show that the average binding energies of BiGr/BP (i=0,1,2,3,4) are negative, suggesting their suitability for experimental synthesis. Band structure and density of states analyses reveal that BiGr/BP(i=0,1,2,3,4) exhibit high conductivity, as the 2p orbitals of carbon and boron dominantly contribute to the density of states at the Fermi level. Magnesium (Mg) adsorption capacity interactions between the heterojunctions and Mg. At the highest doping concentration(i=4), the adsorption energy of Mg adsorbed in the interlayer is -3.38 eV, demonstrating substantial potential for Mg storage. Ab initio molecular dynamics (AIMD) simulations at 300 K show minor fluctuations in total energy, confirming the thermal stability of B4Gr/BP. Climbing image nudged elastic band (CI-NEB) method is used to determine two Mg diffusion pathways in the B4Gr/BP interlayer. Along Path II, the maximum diffusion barrier is 0.47 eV, suggesting rapid Mg diffusion in the B4Gr/BP interlayer. The average open-circuit voltage is 0.37 V, ensuring the safety of the charge-discharge process. The theoretical capacity is 286.04 mAh/g, which is twice that of the B4Gr/MoS2 system. In summary, boron doping significantly enhances the Mg storage capacity. Specifically, B4Gr/BP appears to be a promising candidate for high-performance anodes in MIBs, owing to its excellent stability, conductivity, Mg storage capacity, and electrochemical properties.
  • [1]

    Chen W D, Liang J, Yang Z H, Li G 2019 Energy Proc. 1584363

    [2]

    Tarascon J M, Armand M 2001 Nature 414359

    [3]

    Lv C W, Qin M L, He Y P, Wu M Q, Zhu Q S, Wu S Y 2025 Solid State Ionics 423116820

    [4]

    Durajski A P, Kasprzak G T 2023 Phys. B 660414902

    [5]

    Wang Y Q, Yang Z, Song J Y 2025 Mol. Phys. 24 e2482678

    [6]

    Liu L L 2022 M.S. Thesis (Shijiazhuang: Hebei Normal University) (in Chinese) [刘立林2022硕士学位论文(石家庄: 河北师范大学)]

    [7]

    Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X, Wang Y 2021 Rare Met. 40290

    [8]

    Li X Y, Gao G X, Gao Q, Liu C S, Ye X J 2024 Acta Phys. Sin. 73118201(in Chinese) [李欣悦, 高国翔, 高强, 刘春生, 叶小娟2024 73118201]

    [9]

    Raccichini R, Varzi A, Passerini S, B S 2015 Nat. Mater. 14271

    [10]

    Qiu Z, Cao F, Pan G, Li C, Chen M, Zhang Y, He X, Xia Y, Xia X, Zhang W 2023 ChemPhysMater 2267

    [11]

    Zhang L J, Zhang T H, Wang C, Jin W, Li Y, Wang H, Ding C C, Wang Z Y 2025 Chem. Phys. 594112664

    [12]

    Qi J Q, Li Q, Huang M Y, Ni J J, Sui Y W, Meng Q K, Wei F X, Zhu L, Wei W Q 2024 Colloids Surf. A Physicochem. Eng. Asp. 683132998

    [13]

    Fan K M, Tang J, Wu S Y, Yang C F, Hao J B 2017 Phys. Chem. Chem. Phys. 19267

    [14]

    Cheng J, Gao L F, Li T, Mei S, Wang C, Wen B, Huang W C, Li C, Zheng G P, Wang H, Zhang H. 2020 Nano-Micro Lett. 121

    [15]

    Sibari A, Marjaoui A, Lakhal, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O 2018 Sol. Energy Mater. Sol. Cells 180253

    [16]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 1713921

    [17]

    Aierken Y, Cakir D, Sevik C, Peeters F M 2015 Phys. Rev. B 92081408

    [18]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 1198662

    [19]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H, Wang S Y 2017 Small 131700758

    [20]

    Kaddar Y, Zhang W, Enriquez H, Dappe Y J, Bendounan A, Dujardin G, Mounkachi O, El Kenz A, Benyoussef A, Kara A, Oughaddou H 2023 Adv. Funct. Mater. 332213664

    [21]

    Li Y, Wu W T, Ma F 2019 J. Mater. Chem. A 7611

    [22]

    Mukherjee S, Kaloni T P 2012 J. Nano. Res. 141

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 5411169

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 615

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865

    [26]

    Blöchl P E 1994 Phys. Rev. B 5017953

    [27]

    Steinmann S N, Corminboeuf C 2010 J. Chem. Theory Comput. 61990

    [28]

    Nosé S 2002 Mol. Phys. 100191

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 1139901

    [30]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81109

    [31]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91115433

    [32]

    Suragtkhuu S, Bat-Erdene M, Bati A S R, Shapter J G, Davaasambuu S, Batmunkh M 2020 J. Mater. Chem. A 820446

    [33]

    Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H, Gao Y L 2015 Sci. Rep. 59961

    [34]

    Bo T, Liu P F, Xu J P, Zhang J R, Chen Y B, Eriksson O, Wang F W, Wang B T 2018 Phys. Chem. Chem. Phys. 2022168

    [35]

    Sun Z M, Yuan M W, Yang H, Lin L, Sun G B, Yang X J 2021 Appl. Surf. Sci. 543148790

    [36]

    Pozzo M, Alfè D 2008 Phys. Rev. B 77104103

    [37]

    Shomali E, Sarsari I A, Tabatabaei F, Mosaferi M, Seriani N 2019 Comput. Mater. Sci. 163315

    [38]

    Obaidullah, Habiba U, Piya A A, Daula Shamim S U 2023 AIP Adv. 1311

    [39]

    Zhu J D Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)[朱家铎新型磷烯二维材料异质结设计与物性调控研究博士学位论文(西安:西安电子科技大学)]

    [40]

    Zhang C, Jiao Y, He T, Ma F, Kou L, Liao T, Bottle S, Du A 2017 Phys. Chem. Chem. Phys. 1925886

    [41]

    Eames C, Islam M S. 2014 J. Am. Chem. Soc. 13616270

  • [1] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , doi: 10.7498/aps.73.20240134
    [2] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , doi: 10.7498/aps.69.20191799
    [3] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , doi: 10.7498/aps.68.20190575
    [4] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究.  , doi: 10.7498/aps.68.20190181
    [5] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究.  , doi: 10.7498/aps.62.117102
    [6] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , doi: 10.7498/aps.62.233101
    [7] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , doi: 10.7498/aps.62.103102
    [8] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究.  , doi: 10.7498/aps.62.147101
    [9] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究.  , doi: 10.7498/aps.61.017108
    [10] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究.  , doi: 10.7498/aps.60.077101
    [11] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , doi: 10.7498/aps.60.037103
    [12] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , doi: 10.7498/aps.60.027502
    [13] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , doi: 10.7498/aps.58.1917
    [14] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , doi: 10.7498/aps.58.1901
    [15] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , doi: 10.7498/aps.58.7151
    [16] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , doi: 10.7498/aps.58.8002
    [17] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算.  , doi: 10.7498/aps.57.3138
    [18] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算.  , doi: 10.7498/aps.57.1054
    [19] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究.  , doi: 10.7498/aps.56.4062
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  51
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map