搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学模拟流体输运性质的稳定性分析

陈俊 史琳 王楠 毕胜山

引用本文:
Citation:

基于分子动力学模拟流体输运性质的稳定性分析

陈俊, 史琳, 王楠, 毕胜山

The analysis of transport properties stability in molecular dynamics simulations

Chen Jun, Shi Lin, Wang Nan, Bi Sheng-Shan
PDF
导出引用
  • 利用线性响应理论对Ar流体输运参数进行了分子动力学模拟,结果发现:导热系数和黏度会随着自相关积分函数积分时间的增加而产生剧烈波动,而扩散系数却相对稳定. 针对积分稳定性这一问题,对导热系数和黏度中的热流密度和应力张量进行了分解分析,发现含分子间作用力项是影响稳定性的最大因素. 从牛顿力学出发对作用力项的影响机理进行了分析,指明减小这种影响的最主要方法是使在体系进行统计输运参数前达到稳定平衡状态,即最小的预平衡步数应该满足使体系达到该状态下熵最大或者能量最低,并尽量减小温度对体系的影响. 同时,还对模拟盒尺寸、统计步长等因素对积分稳定性的影响进行了分析,给出了保持稳定性的建议.
    The Green-Kubo time correlation function is used to predict fluid argon transport properties, such as diffusion coefficient, viscosity and thermal conductivity, through molecular dynamics simulations. The results show that the transport characteristics, especially the viscosity and thermal conductivity, fluctuate intensely during the simulations. The collective stress tensor is separated into two parts, one is due to the kinetic energy and the other is due to the pair virial function, and the collective heat flux vector is contributed from the kinetic energy, the intermolecular potential and the pair virial function. The results show that the transport characteristics, especially the viscosity and the thermal conductivity, fluctuate intensely during the simulations. The most important contribution to the viscosity and the thermal conductivity is from the autocorrelation of the virial term. The calculations indicate that a more compatible integration time step method is needed to reduce instabilities when the Green-Kubo time correlation is used to calculate the fluid transport parameters. Other factors which influence the stability are also discussed in the paper.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB227305)和国家自然科学基金(批准号:50976060)资助的课题.
    [1]

    Kubo R 1958 J. Phys. Soc. Jpn. 12 570

    [2]
    [3]

    Callen H B, Greene R F 1952 Phys. Rev. 83 702

    [4]
    [5]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [6]

    Castai G, Ford J, Vivaldi F, Vissher W M 1984 Phys. Rev. Lett. 52 1861

    [7]
    [8]
    [9]

    Poetzsch R H, Bettger H 1994 Phys. Rev. B 50 15757

    [10]
    [11]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [12]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [13]
    [14]

    Che J, Cagin T, Deng W, Goddard W A 2000 J. Chem. Phys. 113 6888

    [15]
    [16]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 55 3552]

    [17]
    [18]

    Ma W G, Wang H D, Zhang X, Takahashi K 2009 Chin. Phys. B 18 2035

    [19]
    [20]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 58 7809]

    [21]
    [22]
    [23]

    Nieto-Draghi C, Avalos J B 2003 Mol. Phys. 101 2303

    [24]
    [25]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 55 1]

    [26]
    [27]

    Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501

    [28]
    [29]

    Terao T, Mller-Plathe F 2005 J. Chem. Phys. 122 081103

    [30]
    [31]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [32]

    Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [33]
    [34]

    Eapen J, Li J, Yip S 2007 Phys. Rev. E 76 062501

    [35]
    [36]
    [37]

    Eapen J, Li J, Yip S 2007 Phys. Rev. Lett. 98 028302

    [38]
    [39]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302

    [40]
    [41]

    Marechal G, Ryckaert J P 1983 Chem. Phys. Lett. 101 548

    [42]
    [43]

    Schoen M, Hoheisel C 1985 Mol. Phys. 56 563

    [44]

    Vogelsan R, Hoheisel C, Ciccotti G 1987 J. Chem. Phys. 86 6371

    [45]
    [46]

    Davis P J, Evans D J 1995 J. Chem. Phys. 103 4261

    [47]
    [48]
    [49]

    McGaughey A J H, Kaviany M 2004 Int. J. Heat Mass Transfer 47 1799

    [50]

    Mahajan S S, Subbarayan G, Sammakia B G 2007 Phys. Rev. E 76 056701

    [51]
    [52]
    [53]

    Kurosaki K, Yano K, Yamada K, Uno M, Yamanaka S 2000 J. Alloys Compd. 311 305

    [54]

    Andrade J D, Stassen H 2004 J. Mol. Liq. 110 169

    [55]
    [56]
    [57]

    Kawamura T, Kangawa Y, Kakimoto K 2007 J. Cryst. Growth 298 251

    [58]

    Liu J F 2005 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘娟芳 2005 博士学位论文 (重庆: 重庆大学)]

    [59]
    [60]

    Mclinden M O, Klein S A, Lemmon E W, Peskin A P 2006 NIST Thermodynamic Properties of Refrigerants and Refrigerants Mixtures Database (Boulder: NIST Ste. Ref. Database Gaithersburg)

    [61]
  • [1]

    Kubo R 1958 J. Phys. Soc. Jpn. 12 570

    [2]
    [3]

    Callen H B, Greene R F 1952 Phys. Rev. 83 702

    [4]
    [5]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [6]

    Castai G, Ford J, Vivaldi F, Vissher W M 1984 Phys. Rev. Lett. 52 1861

    [7]
    [8]
    [9]

    Poetzsch R H, Bettger H 1994 Phys. Rev. B 50 15757

    [10]
    [11]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [12]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [13]
    [14]

    Che J, Cagin T, Deng W, Goddard W A 2000 J. Chem. Phys. 113 6888

    [15]
    [16]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 55 3552]

    [17]
    [18]

    Ma W G, Wang H D, Zhang X, Takahashi K 2009 Chin. Phys. B 18 2035

    [19]
    [20]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 58 7809]

    [21]
    [22]
    [23]

    Nieto-Draghi C, Avalos J B 2003 Mol. Phys. 101 2303

    [24]
    [25]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 55 1]

    [26]
    [27]

    Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501

    [28]
    [29]

    Terao T, Mller-Plathe F 2005 J. Chem. Phys. 122 081103

    [30]
    [31]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [32]

    Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [33]
    [34]

    Eapen J, Li J, Yip S 2007 Phys. Rev. E 76 062501

    [35]
    [36]
    [37]

    Eapen J, Li J, Yip S 2007 Phys. Rev. Lett. 98 028302

    [38]
    [39]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302

    [40]
    [41]

    Marechal G, Ryckaert J P 1983 Chem. Phys. Lett. 101 548

    [42]
    [43]

    Schoen M, Hoheisel C 1985 Mol. Phys. 56 563

    [44]

    Vogelsan R, Hoheisel C, Ciccotti G 1987 J. Chem. Phys. 86 6371

    [45]
    [46]

    Davis P J, Evans D J 1995 J. Chem. Phys. 103 4261

    [47]
    [48]
    [49]

    McGaughey A J H, Kaviany M 2004 Int. J. Heat Mass Transfer 47 1799

    [50]

    Mahajan S S, Subbarayan G, Sammakia B G 2007 Phys. Rev. E 76 056701

    [51]
    [52]
    [53]

    Kurosaki K, Yano K, Yamada K, Uno M, Yamanaka S 2000 J. Alloys Compd. 311 305

    [54]

    Andrade J D, Stassen H 2004 J. Mol. Liq. 110 169

    [55]
    [56]
    [57]

    Kawamura T, Kangawa Y, Kakimoto K 2007 J. Cryst. Growth 298 251

    [58]

    Liu J F 2005 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘娟芳 2005 博士学位论文 (重庆: 重庆大学)]

    [59]
    [60]

    Mclinden M O, Klein S A, Lemmon E W, Peskin A P 2006 NIST Thermodynamic Properties of Refrigerants and Refrigerants Mixtures Database (Boulder: NIST Ste. Ref. Database Gaithersburg)

    [61]
  • [1] 孙思杰, 蒋晗. 各向异性界面动力学对深胞晶生长形态稳定性的影响.  , 2024, 73(11): 118101. doi: 10.7498/aps.73.20240362
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] 张同伟, 杨坤德, 马远良, 汪勇. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法.  , 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [5] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] 王丽莉, 万明杰, 马江将, 蒋刚. U1-xPuxO2热膨胀性质分子动力学模拟研究.  , 2014, 63(8): 083103. doi: 10.7498/aps.63.083103
    [7] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究.  , 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [8] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟.  , 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [9] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性.  , 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [10] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案.  , 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [11] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析.  , 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [12] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [13] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟.  , 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [14] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [15] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解.  , 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [16] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解.  , 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [17] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解.  , 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [18] 王 坤. 相对转动动力学方程的稳定性及在一类黏弹性系数下的解.  , 2005, 54(9): 3987-3991. doi: 10.7498/aps.54.3987
    [19] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解.  , 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [20] 薛卫东, 朱正和. CUO基态分子热力学稳定性研究.  , 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
计量
  • 文章访问数:  8274
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-30
  • 修回日期:  2011-06-02
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map