-
利用分子动力学模拟方法和反应力场势函数研究了Al/SiO2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质. 发现Al/SiO2体系的铝热反应是自加热的氧化还原反应. 当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高. 当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响. 初始温度为600,700,800,1100 K时的自加热速率分别为3.4,3.5,4.7 和5.4 K/ps. Al/SiO2体系的铝热反应析出了Si单质,与实验结果相符合.In this study we have investigated the thermite reaction of Al/SiO2 layered structure by classical molecular dynamics simulation in combination with the reactive force field function. Under the adiabatic conditions, we simulate the structural changes and energetic properties of the system at six different initial temperatures (600, 700, 800, 900, 1000 and 1100 K). These results show that the thermite reaction of Al/SiO2 is the self-heating reduction-oxidation (redox) reaction. When the initial temperatures are 900 and 1000 K, the Al layers change into liquid-like structure under melting points. The thermite reaction happens with a much faster rate. At other initial temperatures such as 600, 700, 800 and 1100 K, the thin Al-O layer at the interface is quite weak for the higher initial temperature. The adiabatic reaction temperature increases and the effective reaction time decreases with the increasing of the initial temperature. the reaction self-heating rates are 3.4, 3.5, 4.7 and 5.4 K/ps for the initial temperatures of 600, 700, 800 and 1100 K, respectively. The results reveal that the thermite reaction self-heating rates depend on the thickness of interfacial diffusion barrier in the nanoparticle. In addition, the thermite reaction of the Al/SiO2 system leaves the Si, which accord well with the experimental result.
-
Keywords:
- molecular dynamics /
- radial distribution function /
- mean square distance /
- ReaxFF
[1] Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]
[2] [3] An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]
[4] Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202
[5] [6] [7] Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296
[8] Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122
[9] [10] [11] Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90
[12] Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241
[13] [14] Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181
[15] [16] [17] Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52
[18] [19] Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184
[20] [21] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[22] [23] Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103
[24] [25] Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802
[26] [27] Tomar V, Zhou M 2006 Phys. Rev. B 73 174116
[28] [29] Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103
[30] Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114
[31] [32] [33] Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]
[34] Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904
[35] [36] [37] Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]
[38] van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396
[39] [40] Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002
[41] [42] [43] Plimpton S 1995 J. Comput. Phys. 117 1
[44] [45] Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 60 066801]
[46] Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707
[47] -
[1] Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]
[2] [3] An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]
[4] Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202
[5] [6] [7] Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296
[8] Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122
[9] [10] [11] Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90
[12] Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241
[13] [14] Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181
[15] [16] [17] Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52
[18] [19] Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184
[20] [21] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 61 246501]
[22] [23] Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103
[24] [25] Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802
[26] [27] Tomar V, Zhou M 2006 Phys. Rev. B 73 174116
[28] [29] Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103
[30] Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114
[31] [32] [33] Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]
[34] Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904
[35] [36] [37] Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 62 208202]
[38] van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396
[39] [40] Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002
[41] [42] [43] Plimpton S 1995 J. Comput. Phys. 117 1
[44] [45] Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 60 066801]
[46] Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707
[47]
计量
- 文章访问数: 9130
- PDF下载量: 1199
- 被引次数: 0