搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au-TiO2光电极界面声子热输运特性的分子动力学模拟

桑丽霞 李志康

引用本文:
Citation:

Au-TiO2光电极界面声子热输运特性的分子动力学模拟

桑丽霞, 李志康

Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode

Sang Li-Xia, Li Zhi-Kang
PDF
HTML
导出引用
  • 为了研究光电分解水体系中具有热等离激元效应的Au-TiO2电极的界面热输运特性, 本文采用非平衡分子动力学方法研究了温度、界面耦合强度以及添加石墨烯层对Au-TiO2界面热导的影响, 并通过声子态密度对界面热导的变化进行了分析. 研究结果表明, 当体系温度从300 K增加到800 K时, Au-TiO2界面导热系数增加了78.55%, 这与更多的低频声子参与界面热输运相关, 更多的热量传递到TiO2上可促进界面反应. 随着Au与TiO2界面耦合强度的增大, 界面热导率可通过TiO2和Au的声子态密度的重叠程度得到优化. 添加单层石墨烯可提高Au-TiO2结构的界面热导, 其中0—30 THz的低频区声子对导热贡献最大, 但添加2层和3层石墨烯, 石墨烯层与层之间的相互作用力阻碍了界面传热, 且在低频区的声子数量有所降低, 不利于热量在Au和TiO2之间进行传递.
    Thermoplasmonics originating from the relaxation process of plasmon resonances in nanostructures can be utilized as an efficient and highly localized heat source in solar-hydrogen conversion, but there have been few researches on the interfacial heat transport properties of photoelectrode with the thermoplasmonics effect in a photoelectrochemical water splitting system. In this work, the effects of temperature, interfacial coupling strength and the addition of graphene layers on the interfacial thermal conductance of Au-TiO2 electrodes are investigated by the non-equilibrium molecular dynamics simulation, and the variation of interfacial thermal conductance is analyzed by the phonon density of states. The results show that the interfacial thermal conductivity is increased by 78.55% when the temperature increases from 300 to 800 K. This is related to the fact that more low-frequency phonons participate in the interface heat transport, allowing more heat to be transferred to TiO2 to promote the interface reaction. As the coupling strength of the Au-TiO2 interface increases, the interfacial thermal conductivity of the electrode increases and then tends to stabilize. The interfacial thermal conductivity can be optimized by increasing the degree of overlap of the phonon state densities of Au and TiO2. The addition of a single layer of graphene can increase the interfacial thermal conductivity to 98.072 MW⋅m–2⋅K–1, but the addition of 2 and 3 layers of graphene can hinder interfacial heat transfer in Au and TiO2 due to the interaction between the layers of graphene. When adding graphene layer, medium-frequency phonons and high-frequency phonons are stimulated to participate in the interfacial heat transfer, but with the increase of the graphene layers, the number of low-frequency phonons in a range of 0—30 THz decreases, and these low-frequency phonons make the greatest contribution to the interfacial thermal conductivity. The obtained results are useful in regulating the thermal transport properties of the photoelectrode interface, which can provide new insights into and theoretical basis for the design and construction of composite photoelectrodes.
      通信作者: 桑丽霞, sanglixia@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52176174)资助的课题.
      Corresponding author: Sang Li-Xia, sanglixia@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176174).
    [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner L, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Nie J L, Schneider J, Sieland F, Zhou L, Xia S W, Bahnemann D W 2018 RSC Adv. 8 25881Google Scholar

    [4]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [5]

    Zhao Y, Sang L X, Wang C 2023 Sol. Energy Mater. Sol. Cells 255 112306Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Wu K P, Zhang L, Wang D B, Li F Z, Zhang P Z, Sang L W, Liao M Y, Tang K, Ye J D, Gu S L 2022 Sci. Rep. 12 19907Google Scholar

    [8]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [9]

    Sadasivam S, Waghmare U V, Fisher T S 2015 J. Appl. Phys. 117 134502Google Scholar

    [10]

    Wu B Y, Zhou M, Xu D J, Liu J J, Tang R J, Zhang P 2022 Surf. Interfaces 32 102119Google Scholar

    [11]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [12]

    Qiu L, Zhu N, Feng Y H, Zhang X X, Wang X T 2020 Int. J. Heat Mass Transfer 152 119565Google Scholar

    [13]

    Wu J X, Wen H, Shi H Z, Chen C P, Huang B, Wei Y F, Li M 2019 Superlattices Microstruct. 130 258Google Scholar

    [14]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [15]

    Chen G F, Chen J, Wang Z L 2020 Int. J. Thermophys. 41 48Google Scholar

    [16]

    Wang B C, Shao W, Cao Q, Cui Z 2022 Int. J. Heat Mass Transfer 191 122850Google Scholar

    [17]

    Roodbari M, Abbasi M, Arabha S, Gharedaghi A, Rajabpour A 2022 J. Mol. Liq. 348 118053Google Scholar

    [18]

    Yang L, Wang C Z, Lin S W, Chen T H, Cao Y, Zhang P, Liu X H 2019 J. Phys. Condens. Matter 31 055302Google Scholar

    [19]

    于泽沛, 冯妍卉, 冯黛丽, 张欣欣 2020 化工学报 71 1822Google Scholar

    Yu Z P, Feng Y H, Feng D L, Zhang X X 2020 CIESC J. 71 1822Google Scholar

    [20]

    Zhang Y J, Wang Z Y, Li N, Sun F Y, Hao J P, Wu H J, Zhang H L 2023 Appl. Surf. Sci. 638 158001Google Scholar

    [21]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wang X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [22]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar

    [23]

    Aksoy M M, AlHosani M, Bayazitoglu Y 2021 Int. J. Thermophys. 42 87Google Scholar

    [24]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [25]

    Hong Y, Zhang J C, Zeng X C 2016 Nanoscale 8 19211Google Scholar

    [26]

    Matsui M, Akaogi M 1991 Mol. Simul. 6 239Google Scholar

    [27]

    Heyhat M M, Abbasi M, Rajabpour A 2021 J. Mol. Liq. 333 115966Google Scholar

    [28]

    Ding Z W, Pei Q X, Jiang J W, Huang W X, Zhang Y W 2016 Carbon 96 888Google Scholar

    [29]

    Yang N, Luo T F, Esfarjani K, Henry A, Tian Z T, Shiomi J, Chalopin Y, Li B W, Chen G 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [32]

    Huang H, Zhong Y H, Cai B, Wang J F, Liu Z X, Peng Q 2023 Surf. Interfaces 37 102736Google Scholar

    [33]

    Liang Z, Hu M 2018 J. Appl. Phys. 123 191101Google Scholar

    [34]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [35]

    Mitra D, Howli P, Das B K, Das N S, Chattopadhyay P, Chattopadhyay K K 2020 J. Mol. Liq. 302 112499Google Scholar

    [36]

    Momenzadeh L, Moghtaderi B, Belova I V, Murch G E 2018 Comput. Condens. Matter 17 e00342Google Scholar

    [37]

    Chow P K, Cardona Quintero Y, O’Brien P, Hubert Mutin P, Lane M, Ramprasad R, Ramanath G 2013 Appl. Phys. Lett. 102 201605Google Scholar

    [38]

    Hatam-Lee S M, Jabbari F, Rajabpour A 2022 Nanoscale Microscale Thermophys. Eng. 26 40Google Scholar

    [39]

    Bao W L, Wang Z L, Tang D W 2022 Int. J. Heat Mass Transfer 183 122090Google Scholar

    [40]

    Zou H Y, Feng Y H, Qiu L, Zhang X X 2022 Int. J. Heat Mass Transfer 183 122216Google Scholar

    [41]

    Wilson B A, Nielsen S O, Randrianalisoa J H, Qin Z P 2022 J. Chem. Phys. 157 054703Google Scholar

    [42]

    Farahani H, Rajabpour A, Khanaki M, Reyhani A 2018 Comput. Mater. Sci. 142 1Google Scholar

    [43]

    安盟, 孙旭辉, 陈东升, 杨诺 2022 71 166501Google Scholar

    An M, Sun X H, Chen D S, Yang N 2022 Acta Phys. Sin. 71 166501Google Scholar

    [44]

    Hu M, Sergei S, Pawel K 2007 Appl. Phys. Lett. 91 241910Google Scholar

    [45]

    Kan Y J, Hong F, Wei Z Y, Bi K D 2020 Mater. Res. Express 7 095602Google Scholar

    [46]

    Wei Z Y, Ni Z H, Bi K D, Chen M H, Chen Y F 2011 Carbon 49 2653Google Scholar

    [47]

    Cao H Y, Guo Z X, Xiang H J, Gong X G 2012 Phys. Lett. A 376 525Google Scholar

    [48]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [49]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [50]

    Wu X, Han Q 2022 Int. J. Heat Mass Transfer 191 122829Google Scholar

  • 图 1  Au-TiO2异质结构的原子结构

    Fig. 1.  Atomic structure of Au-TiO2 heterostructure.

    图 2  NEMD模拟计算热导率的原理图

    Fig. 2.  Schematic diagram of thermal conductivity calculated by NEMD simulation.

    图 3  Au-TiO2结构的界面热导率随系统长度的变化

    Fig. 3.  Variation of interfacial thermal conductivity with system length for Au-TiO2 structure.

    图 4  300 K下Au-TiO2界面的温度分布(a)和能量分布(b)

    Fig. 4.  Temperature distribution (a) and energy distribution (b) of Au-TiO2 interface at 300 K.

    图 5  不同温度下Au-TiO2的界面热导率

    Fig. 5.  Interfacial thermal conductivity of Au-TiO2 at different temperatures.

    图 6  不同温度下的VDOS (a) TiO2; (b) Au

    Fig. 6.  VDOS at different temperatures: (a) TiO2; (b) Au.

    图 7  不同耦合强度下Au-TiO2结构的温度分布(a)和能量分布(b)

    Fig. 7.  Temperature distribution (a) and energy distribution (b) of the Au-TiO2 structure with different coupling strengths.

    图 8  不同耦合强度下Au-TiO2的界面热导率

    Fig. 8.  Interfacial thermal conductivity of Au-TiO2 at different coupling strengths.

    图 9  不同耦合强度下Au和TiO2的声子态密度 (a) χ = 1; (b) χ = 1.5; (c) χ = 2; (d) χ = 2.5

    Fig. 9.  Phonon density of states for Au and TiO2 at different coupling strengths: (a) χ = 1; (b) χ = 1.5; (c) χ = 2; (d) χ = 2.5.

    图 10  不同石墨烯层数下Au-TiO2的界面温差及热流量(a)和界面热导率(b)

    Fig. 10.  Interfacial temperature difference and heat flow (a) and interfacial thermal conductivity (b) of Au-TiO2 with different numbers of graphene layers.

    图 11  一层(a)、两层(b)、三层(c)石墨烯时界面各组分的声子态密度; (d)不同频率段声子对界面热导率的贡献

    Fig. 11.  Phonon density of states for each component of the interface with (a) one layer, (b) two layers, (c) three layers graphene; (d) contribution of phonons to interfacial thermal conductivity in different frequency bands.

    表 1  Matsui-Akaogi力场的Buckingham势函数参数[28]

    Table 1.  Parameters of the Buckingham potential function for the Matsui-Akaogi force field[28].

    Aij/(kcal·mol–1)Bij/(kcal·mol–1·Å6)ρij
    Ti—Ti717650121.100.155
    Ti—O391050290.420.195
    O—O271720696.950.235
    下载: 导出CSV

    表 2  L-J势函数参数

    Table 2.  L-J potential function parameter.

    σε0/(kcal·mol–1)
    Ti—Au2.4881.62018
    O—Au3.0920.81932
    Ti—C2.9300.24029
    Au—C3.4550.64085
    O—C3.5290.12158
    下载: 导出CSV
    Baidu
  • [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner L, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Nie J L, Schneider J, Sieland F, Zhou L, Xia S W, Bahnemann D W 2018 RSC Adv. 8 25881Google Scholar

    [4]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [5]

    Zhao Y, Sang L X, Wang C 2023 Sol. Energy Mater. Sol. Cells 255 112306Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Wu K P, Zhang L, Wang D B, Li F Z, Zhang P Z, Sang L W, Liao M Y, Tang K, Ye J D, Gu S L 2022 Sci. Rep. 12 19907Google Scholar

    [8]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [9]

    Sadasivam S, Waghmare U V, Fisher T S 2015 J. Appl. Phys. 117 134502Google Scholar

    [10]

    Wu B Y, Zhou M, Xu D J, Liu J J, Tang R J, Zhang P 2022 Surf. Interfaces 32 102119Google Scholar

    [11]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [12]

    Qiu L, Zhu N, Feng Y H, Zhang X X, Wang X T 2020 Int. J. Heat Mass Transfer 152 119565Google Scholar

    [13]

    Wu J X, Wen H, Shi H Z, Chen C P, Huang B, Wei Y F, Li M 2019 Superlattices Microstruct. 130 258Google Scholar

    [14]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [15]

    Chen G F, Chen J, Wang Z L 2020 Int. J. Thermophys. 41 48Google Scholar

    [16]

    Wang B C, Shao W, Cao Q, Cui Z 2022 Int. J. Heat Mass Transfer 191 122850Google Scholar

    [17]

    Roodbari M, Abbasi M, Arabha S, Gharedaghi A, Rajabpour A 2022 J. Mol. Liq. 348 118053Google Scholar

    [18]

    Yang L, Wang C Z, Lin S W, Chen T H, Cao Y, Zhang P, Liu X H 2019 J. Phys. Condens. Matter 31 055302Google Scholar

    [19]

    于泽沛, 冯妍卉, 冯黛丽, 张欣欣 2020 化工学报 71 1822Google Scholar

    Yu Z P, Feng Y H, Feng D L, Zhang X X 2020 CIESC J. 71 1822Google Scholar

    [20]

    Zhang Y J, Wang Z Y, Li N, Sun F Y, Hao J P, Wu H J, Zhang H L 2023 Appl. Surf. Sci. 638 158001Google Scholar

    [21]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wang X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [22]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar

    [23]

    Aksoy M M, AlHosani M, Bayazitoglu Y 2021 Int. J. Thermophys. 42 87Google Scholar

    [24]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [25]

    Hong Y, Zhang J C, Zeng X C 2016 Nanoscale 8 19211Google Scholar

    [26]

    Matsui M, Akaogi M 1991 Mol. Simul. 6 239Google Scholar

    [27]

    Heyhat M M, Abbasi M, Rajabpour A 2021 J. Mol. Liq. 333 115966Google Scholar

    [28]

    Ding Z W, Pei Q X, Jiang J W, Huang W X, Zhang Y W 2016 Carbon 96 888Google Scholar

    [29]

    Yang N, Luo T F, Esfarjani K, Henry A, Tian Z T, Shiomi J, Chalopin Y, Li B W, Chen G 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [32]

    Huang H, Zhong Y H, Cai B, Wang J F, Liu Z X, Peng Q 2023 Surf. Interfaces 37 102736Google Scholar

    [33]

    Liang Z, Hu M 2018 J. Appl. Phys. 123 191101Google Scholar

    [34]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [35]

    Mitra D, Howli P, Das B K, Das N S, Chattopadhyay P, Chattopadhyay K K 2020 J. Mol. Liq. 302 112499Google Scholar

    [36]

    Momenzadeh L, Moghtaderi B, Belova I V, Murch G E 2018 Comput. Condens. Matter 17 e00342Google Scholar

    [37]

    Chow P K, Cardona Quintero Y, O’Brien P, Hubert Mutin P, Lane M, Ramprasad R, Ramanath G 2013 Appl. Phys. Lett. 102 201605Google Scholar

    [38]

    Hatam-Lee S M, Jabbari F, Rajabpour A 2022 Nanoscale Microscale Thermophys. Eng. 26 40Google Scholar

    [39]

    Bao W L, Wang Z L, Tang D W 2022 Int. J. Heat Mass Transfer 183 122090Google Scholar

    [40]

    Zou H Y, Feng Y H, Qiu L, Zhang X X 2022 Int. J. Heat Mass Transfer 183 122216Google Scholar

    [41]

    Wilson B A, Nielsen S O, Randrianalisoa J H, Qin Z P 2022 J. Chem. Phys. 157 054703Google Scholar

    [42]

    Farahani H, Rajabpour A, Khanaki M, Reyhani A 2018 Comput. Mater. Sci. 142 1Google Scholar

    [43]

    安盟, 孙旭辉, 陈东升, 杨诺 2022 71 166501Google Scholar

    An M, Sun X H, Chen D S, Yang N 2022 Acta Phys. Sin. 71 166501Google Scholar

    [44]

    Hu M, Sergei S, Pawel K 2007 Appl. Phys. Lett. 91 241910Google Scholar

    [45]

    Kan Y J, Hong F, Wei Z Y, Bi K D 2020 Mater. Res. Express 7 095602Google Scholar

    [46]

    Wei Z Y, Ni Z H, Bi K D, Chen M H, Chen Y F 2011 Carbon 49 2653Google Scholar

    [47]

    Cao H Y, Guo Z X, Xiang H J, Gong X G 2012 Phys. Lett. A 376 525Google Scholar

    [48]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [49]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [50]

    Wu X, Han Q 2022 Int. J. Heat Mass Transfer 191 122829Google Scholar

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究.  , 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [4] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导.  , 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [5] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟.  , 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [6] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟.  , 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [7] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究.  , 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [9] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [10] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [11] 颜超, 黄莉莉, 何兴道. 入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟.  , 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [12] 王丽莉, 万明杰, 马江将, 蒋刚. U1-xPuxO2热膨胀性质分子动力学模拟研究.  , 2014, 63(8): 083103. doi: 10.7498/aps.63.083103
    [13] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [14] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟.  , 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [15] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [16] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [17] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [18] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [19] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究.  , 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  2633
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-03-18
  • 上网日期:  2024-03-20
  • 刊出日期:  2024-05-20

/

返回文章
返回
Baidu
map