搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zn-Mg合金的长程Finnis-Sinclair势

王召柯 吴永全 沈通 刘益虎 蒋国昌

引用本文:
Citation:

Zn-Mg合金的长程Finnis-Sinclair势

王召柯, 吴永全, 沈通, 刘益虎, 蒋国昌

Long-range Finnis-Sinclair potential for Zn-Mg alloy

Wang Zhao-Ke, Wu Yong-Quan, Shen Tong, Liu Yi-Hu, Jiang Guo-Chang
PDF
导出引用
  • 通过拟合Mg的晶格能、晶格常数、弹性常数,并将其与前人的结果相比较后获得了描述Mg的最优长程Finnis-Sinclair(F-S)势函数参数,使用同样方法并引入修正因子后得到了Zn的长程F-S势参数.基于单质Zn,Mg的F-S势参数,进一步拟合合金Mg21Zn25,MgZn2,Mg2Zn11的晶格常数、晶格能获得Zn-Mg原子对的F-S势参数,构建了整套描述Zn-Mg合金的长程F-S势参数.在此
    A set of optimal long-range Finnis-Sinclair (F-S) potential parameters of single Mg are achieved by fitting the lattice energy, lattice constants, and elastic constants to experimental results. With the same method, the set of the F-S potential parameters of single Zn are obtained through the introduction of modifying factor to the repulsive term. Finally, the lattice energy and lattice constants of Mg21 Zn25, MgZn2 and Mg2Zn11 alloys are further fitted to achieve the F-S potential parameters of Zn-Mg based on the previous F-S potential parameters of Mg-Mg and Zn-Zn. After that, a series of molecular dynamics simulations of single Mg, Zn, and Mg21 Zn25, MgZn2, Mg2Zn11 alloys is performed at 300 K with the achieved F-S potential parameters, thereby proving the F-S potential parameters to be appropriate for the description of Zn-Mg alloys. The long-range F-S potential parameters of Zn and Zn, Mg and Mg, Zn and Mg are obtained.
    • 基金项目: 国家自然科学基金(批准号:50504010,50974083,50774112)、上海市青年科技启明星计划(批准号:07QA4021)、教育部长江学者和创新团队发展计划(批准号:IRT0739)和上海市教育委员会科研创新计划(批准号:09YZ24)资助的课题.
    [1]

    Wang D, Xiao B L, Ma Z Y, Zhang H F 2009 Scripta Mater. 60 112

    [2]

    Wloka J, Virtanen S 2007 Acta Mater. 55 6666

    [3]
    [4]
    [5]

    Daw M S, Baskes M I 1983 Phys. Rev. Lett. 50 1285

    [6]
    [7]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [8]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [9]
    [10]

    Baskes M I, Srinivasan S G, Valone S M, Hoagland R G 2007 Phys. Rev. B 75 094113

    [11]
    [12]
    [13]

    Zhang J M, Wang D D, Xu K W 2006 Appl. Surf. Sci. 252 8217

    [14]

    Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506

    [15]
    [16]

    Yuan X J, Chen N X, Shen J, Hu W Y 2010 J. Phys.: Condens. Matter 22 375503

    [17]
    [18]
    [19]

    Oh D J, Johnson R A 1988 J. Mater. Res. 3 471

    [20]
    [21]

    Zhang B W, Hu W Y, Shu X L 2002 Theory of Embedded Atom Method and Its Application to Materials ScienceAtomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese)[张邦维、胡望宇、舒小林 2002 嵌入原子方法理论及其在材料科学中的应用原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [22]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Model. Simul. Mater. Sci. Eng. 4 293

    [23]
    [24]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 24116

    [25]
    [26]
    [27]

    Brommer P, Gahler F 2006 Phil. Mag. 86 753

    [28]
    [29]

    Brommer P, Gahler F 2007 Model. Simul. Mater. Sci. Eng. 15 295

    [30]
    [31]

    Igarashi M, Khantha M, Vitek V 1991 Phil. Mag. B 63 603

    [32]

    Pasianot R, Savino E J 1992 Phys. Rev. B 45 12704

    [33]
    [34]

    Sutton A P, Chen J 1990 Phil. Mag. Lett. 61 139

    [35]
    [36]

    Gale J D, Rohl A L 2003 Mol. Simul. 29 291

    [37]
    [38]

    Hu Z G, Liu Y H, Wu Y Q, Shen T, Wang Z K 2009 Acta Phys. Sin. 58 7838 (in Chinese)[胡志刚、刘益虎、吴永全、沈通、王召柯 2009 58 7838]

    [39]
    [40]

    Kart O S, Tomak M, Uludogan M, Cagin T 2004 J. Non-Cryst. Solids 337 101

    [41]
    [42]

    Zhang Y G, Guo G J 2000 Phys. Earth Planet. Inter. 122 289

    [43]
    [44]
    [45]

    Cleri F, Rosato V 1993 Phys. Rev. B 48 22

    [46]

    Wedig U, Jansen M, Paulus B,Rosciszewski K, Sony P 2007 Phys. Rev. B 75 205123

    [47]
    [48]
    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [50]
    [51]

    Kittel C 1996 Introduction to Solid State Physics (7th ed) (New York: Wiley) p23

    [52]
    [53]

    Wei F, Bai P C, Zhou T T, Liu P Y, Zhang Y G, Chen C Q 2004 J. Aero. Mater. 24 28 (in Chinese)[魏 芳、白朴存、周铁涛、刘培英、张永刚、陈昌麒 2004 航空材料学报 24 28]

    [54]

    Cerny R, Renaudin G 2002 Acta Crystallogr. C 58 i154

    [55]
    [56]

    Wandahl G, Christensen A N 1989 Acta Chem. Scand. 43 296

    [57]
    [58]

    Samson S 1949 Acta Chem. Scand. 3 835

    [59]
    [60]

    Smith W, Forester T R 1996 J. Mol. Graphics 14 136

    [61]
    [62]

    Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [63]
  • [1]

    Wang D, Xiao B L, Ma Z Y, Zhang H F 2009 Scripta Mater. 60 112

    [2]

    Wloka J, Virtanen S 2007 Acta Mater. 55 6666

    [3]
    [4]
    [5]

    Daw M S, Baskes M I 1983 Phys. Rev. Lett. 50 1285

    [6]
    [7]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [8]

    Baskes M I 1992 Phys. Rev. B 46 2727

    [9]
    [10]

    Baskes M I, Srinivasan S G, Valone S M, Hoagland R G 2007 Phys. Rev. B 75 094113

    [11]
    [12]
    [13]

    Zhang J M, Wang D D, Xu K W 2006 Appl. Surf. Sci. 252 8217

    [14]

    Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506

    [15]
    [16]

    Yuan X J, Chen N X, Shen J, Hu W Y 2010 J. Phys.: Condens. Matter 22 375503

    [17]
    [18]
    [19]

    Oh D J, Johnson R A 1988 J. Mater. Res. 3 471

    [20]
    [21]

    Zhang B W, Hu W Y, Shu X L 2002 Theory of Embedded Atom Method and Its Application to Materials ScienceAtomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese)[张邦维、胡望宇、舒小林 2002 嵌入原子方法理论及其在材料科学中的应用原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [22]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Model. Simul. Mater. Sci. Eng. 4 293

    [23]
    [24]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 24116

    [25]
    [26]
    [27]

    Brommer P, Gahler F 2006 Phil. Mag. 86 753

    [28]
    [29]

    Brommer P, Gahler F 2007 Model. Simul. Mater. Sci. Eng. 15 295

    [30]
    [31]

    Igarashi M, Khantha M, Vitek V 1991 Phil. Mag. B 63 603

    [32]

    Pasianot R, Savino E J 1992 Phys. Rev. B 45 12704

    [33]
    [34]

    Sutton A P, Chen J 1990 Phil. Mag. Lett. 61 139

    [35]
    [36]

    Gale J D, Rohl A L 2003 Mol. Simul. 29 291

    [37]
    [38]

    Hu Z G, Liu Y H, Wu Y Q, Shen T, Wang Z K 2009 Acta Phys. Sin. 58 7838 (in Chinese)[胡志刚、刘益虎、吴永全、沈通、王召柯 2009 58 7838]

    [39]
    [40]

    Kart O S, Tomak M, Uludogan M, Cagin T 2004 J. Non-Cryst. Solids 337 101

    [41]
    [42]

    Zhang Y G, Guo G J 2000 Phys. Earth Planet. Inter. 122 289

    [43]
    [44]
    [45]

    Cleri F, Rosato V 1993 Phys. Rev. B 48 22

    [46]

    Wedig U, Jansen M, Paulus B,Rosciszewski K, Sony P 2007 Phys. Rev. B 75 205123

    [47]
    [48]
    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [50]
    [51]

    Kittel C 1996 Introduction to Solid State Physics (7th ed) (New York: Wiley) p23

    [52]
    [53]

    Wei F, Bai P C, Zhou T T, Liu P Y, Zhang Y G, Chen C Q 2004 J. Aero. Mater. 24 28 (in Chinese)[魏 芳、白朴存、周铁涛、刘培英、张永刚、陈昌麒 2004 航空材料学报 24 28]

    [54]

    Cerny R, Renaudin G 2002 Acta Crystallogr. C 58 i154

    [55]
    [56]

    Wandahl G, Christensen A N 1989 Acta Chem. Scand. 43 296

    [57]
    [58]

    Samson S 1949 Acta Chem. Scand. 3 835

    [59]
    [60]

    Smith W, Forester T R 1996 J. Mol. Graphics 14 136

    [61]
    [62]

    Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [63]
  • [1] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究.  , 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [2] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学.  , 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [9] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [10] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [11] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性.  , 2013, 62(9): 095201. doi: 10.7498/aps.62.095201
    [12] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [13] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [16] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [17] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究.  , 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [18] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟.  , 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  6833
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-24
  • 修回日期:  2011-03-06
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map