-
多主元合金,亦称为高熵合金,作为一种新型合金材料,因其优异的力学性能和热稳定性在多个领域展现出巨大的应用潜力。本文采用分子动力学模拟方法,以三种典型的体心立方结构多主元合金——TaWNbMo、TiZrNb和CoFeNiTi为研究对象,系统地研究了合金中的原子局域晶格畸变特征及其影响因素。通过冯·米塞斯应变和体积应变作为描述符,我们定量分析了合金中原子应变的分布及其与晶格畸变的关系。研究结果表明,晶格畸变越大,冯·米塞斯应变和体积应变的分布范围越广,且应变值显著增加。进一步分析发现,合金中的原子半径差异、化学短程有序结构以及温度均显著影响原子应变。具体而言,原子半径差异越大,体积应变越大,而化学短程有序结构的形成有助于减小晶格畸变和原子应变。温度的升高则会导致晶格振动加剧,从而增加原子应变。本文的研究为理解高熵合金的微观力学行为提供了新的视角,并为其在高温和极端环境下的应用设计提供了理论支持。Multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs), represent a class of novel materials that have garnered significant attention due to their exceptional mechanical properties, thermal stability, and resistance to wear and corrosion. These alloys are typically composed of multiple principal elements in near-equal atomic proportions, forming solid solution phases such as face-centered cubic (FCC) or body-centered cubic (BCC) structures. Despite the promising applications, a deeper understanding of the atomic-level behavior, particularly lattice distortion and atomic strain, is essential to better design and optimize these materials for extreme environments. This study focuses on systematically investigating the atomic-scale lattice distortion characteristics and their impact on atomic strain in three representative BCC-based MPEAs: TaWNbMo, TiZrNb, and CoFeNiTi. We utilize molecular dynamics (MD) simulations to explore the local atomic strain distributions in these alloys at various temperatures. Von Mises strain and volumetric strain are employed as key descriptors to quantify the atomic strain, providing a clear representation of how lattice distortion at the atomic level influences the overall strain behavior. The study specifically addresses the effects of atomic radius differences, chemical short-range ordering, and temperature on the strain characteristics of the alloys. Our results indicate that an increase in lattice distortion corresponds to a broader distribution of Von Mises strain and volumetric strain, with strain values significantly amplified. More precisely, alloys with larger atomic radius differences exhibit greater volumetric strain, reflecting the influence of atomic size disparity on strain distribution. Furthermore, the formation of chemical short-range order (CSRO) significantly mitigates lattice distortion and atomic strain. This finding highlights the importance of short-range atomic ordering in enhancing the stability of the alloy structures, thus potentially improving their mechanical properties. Temperature effects are also investigated, revealing that elevated temperatures induce more intense atomic vibrations, which in turn increase the atomic strain. The findings underscore the complex interplay between atomic-scale phenomena and macroscopic mechanical properties, offering new insights into the microscopic mechanical behavior of high-entropy alloys. This study contributes to a better understanding of the underlying mechanisms driving atomic strain and lattice distortion in MPEAs. The results provide valuable theoretical insights that can guide the design of high-performance alloys tailored for high-temperature and extreme environments. By addressing the key factors influencing atomic strain, such as atomic radius, chemical ordering, and temperature, this work lays the foundation for future research aimed at enhancing the mechanical performance of MPEAs in various industrial applications.
-
Keywords:
- Multi-principal element alloys /
- lattice distortion /
- atomic strain /
- molecular dynamics simulations
-
[1] George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515
[2] George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435
[3] Miracle D B 2017J. Met. 69 2130
[4] Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183
[5] Zhang Y, Zou T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014Prog. Mater. Sci. 61 1
[6] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299
[7] Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016Nature 534 227
[8] Maresca F, Curtin W A 2020Acta Mater. 182 235
[9] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014Science 3451153
[10] Shi Y Z, Yang B, Liaw P K 2017Metals 7 18
[11] Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018Sci. China-Technol. Sci. 61 168
[12] Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014Phys. Rev. Lett. 1135
[13] Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 1359
[14] Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023Proc. Natl. Acad. Sci. 120116535
[15] Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014Prog. Mater. Sci. 61 1
[16] Kozak P, Sologubenko A, Steurer W 2105 Z Kristallogr Cryst Mater 230 55
[17] Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183
[18] Miracle D B, Senkov O N 2017Acta Mater. 122 448
[19] Fan Z, Wang H, Wu Y, Liu X, Lu Z 2017Mater. Res. Lett. 5 187
[20] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41
[21] Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005Metall. Mater. Trans. A. 36 881
[22] Tsai C W, Tsai M H, Yeh J W, Yang C C 2010J. Alloys Compd. 490 160
[23] Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004Metall. Mater. Trans. A. 35 2533
[24] Yang Y, He Q F 2021Acta Metall. Sin. 57 385
[25] Zou Y, Maiti S, Steurer W, Spolenak R 2014Acta Mater. 6585
[26] Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J,Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964
[27] Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015Acta Mater. 97 156
[28] Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015J. Phys. Condens. Matter 27 315702
[29] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023Scr. Mater. 222 115048
[30] Tandoc C, Hu Y J, Qi L, Liaw P K 2023npj Comput Mater 9 53
[31] Plimpton S 1995 J. Comput. Phys. 117 1
[32] Yin S, Zuo Y X, Abu-Odeh A,Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021Nat.Commun. 12 4873
[33] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020Proc. Natl. Acad. Sci. 28 117
[34] Stukowski A 2009Model. Simul. Mater. Sc 18 015012
[35] Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995Phys. Rev. B 52 12627
[36] Li J 2003Model. Simul. Mater. Sci. Eng. 11 173
[37] Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023Nat. Mater. 22 950
[38] Zhang M, Zhang B Z, Ding J, Ma E 2025Scripta Mater. 259 116559
[39] Ding J, Yu Q, Asta M, O.Ritchie R 2018Proc. Natl. Acad. Sci. 115 8919
[40] Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 05501
[41] Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O.Ritchie R, Minor M A. 2020Nature 581 283
[42] Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023J. Mater. Sci. Technol. 135 221
[43] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024Acta. Mater. 272 119910
[44] He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022Nature 602 251
[45] Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022J. Mater. Sci. Technol. 104 236
计量
- 文章访问数: 59
- PDF下载量: 0
- 被引次数: 0