-
Three-dimensional ultrasonic waves with amplitudes of 14, 18, and 22 μm were applied during the solidification of (FeCoNiCrMn)92Mo8 high-entropy alloy, and its microstructural evolution and mechanical property were investigated. Under static condition, the solidification microstructure was composed of primary γ phase dendrites with FCC structure and stripe-shaped σ phase with tetragonal structure. As the ultrasonic amplitude increased, the mean transient cavitation intensity rose to trigger a significant nucleation rate increase of the primary γ phase to 5.6×1012 m-3·s-1, leading to the remarkable grain size reduction by two orders of magnitude. The maximum and average acoustic streaming velocity increased concurrently, which accelerated atomic diffusion at the liquid/solid interface, reducing Cr content in the primary γ phase from 18.6 at.% to 13.1 at.% and Mo content from 6.8 at.% to 3.4 at.%. This atomic redistribution subsequently caused the liquid composition approaching the eutectic point and facilitated the formation of (γ+σ) eutecticss, which took up more than 50% volume fraction. The two eutectic phases exhibited a semi-coherent interface relationship characterized by (110)γ//(110)σ and (1-1-1)γ//(-110)σ. Furthermore, due to the progressive enrichment of Cr atoms in the remaint liquid phase, a small amount of metastable μ phase with Cr content up to 62.3 at.% formed in the final microstructure. The maximum compressive yield strength of the ultrasonically solidified microstructure reached 876.2 MPa, which was nearly twice of that for static solidification microstructure, and the compressive strain reached 33.2%. The formation of (γ+σ) eutectics represented as the dominant factor to contribute an enhancement of 527.1 MPa to the alloy's yield strength.
-
Keywords:
- high-entropy alloy /
- ultrasonic solidification /
- eutectic microstructure /
- mechanical property
-
[1] Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113107001
[2] Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G Zhang J 2024 Chin. Phys. B 337
[3] Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72076102(in Chinese) [王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏2023 72076102]
[4] Fang J, Li R, Yao S, Chen J, Wang K 2024 J. Appl. Phys. 136245901
[5] Wang X, Zhai W, Li H, Wang J Y, Wei B 2023 Acta Mater. 252118900
[6] Song H, Feng C, Guan Z, Zhang W, Yang H, Tang Y, Zeng K, Yuan X, Zhang J, Liu J, Zhang F 2025 Appl. Phys. Lett. 126031903
[7] Yu Z, Wang H, Sun L, Li Z, Zhu L 2024 Chin. Phys. B 3311
[8] Wen P, Tao G 2022 Acta Phys. Sin. 7124(in Chinese) [闻鹏, 陶钢2022 7124]
[9] Cantor B 2021 Prog. Mater. Sci. 120100754
[10] Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 353
[11] Xing R, Liu X 2024 Chin. Phys. B. 331
[12] An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71243101(in Chinese) [安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋2022 71243101]
[13] Qin G, Chen R, Zheng H, Fang H, Wang L, Su Y, Guo J, Fu H 2019 J. Mater. Sci. Technol. 35578
[14] Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123100709
[15] Azhagarsamy P,Sekar K, Murali K P 2022 Mater. Sci. Technol. 13788
[16] Wang H, He Q, Yang Y 2022 Rare Met. 416
[17] Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 19415
[18] Wang W, Meng L, Li L, Hu L, Zhou K, Kong Z, Wei B 2016 Chin. Phys. L. 3311
[19] Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509114
[20] Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B 2024 Acta Phys. Sin. 73184301(in Chinese) [张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波2024 73184301]
[21] Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 8918
[22] Du R J, Xie W J 2011 Acta Phys. Sin. 6011(in Chinese) [杜人君, 解文军2011 6011]
[23] El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172121090
[24] Xu N, Yu Y, Zhai W, Wang J, Wei B 2023 Ultrason. Sonochem. 94106343
[25] Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67034301(in Chinese) [马艳, 林书玉, 徐洁2018 67034301]
[26] Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 661
[27] Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008176619
[28] Jamshidi R, Brenner G 2013 Ultrasonics 53842
[29] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68628
[30] Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54171
[31] Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74425
[32] Kurz W, Fisher D J 1998 Fundamentals of solidification (5th Edition) (Baech: Trans Tech Publications)
[33] Turnbull D, Cech R E 1950 J. Appl. Phys. 21804
[34] Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 311883
[35] Gale W F, Totemeier T C 1983 Smithells metals reference Book (8th Edition) (Oxford: Butterworth-Heinemann)
[36] Lin M J, Hu L, Zhu X N, Yan P X, Wei B 2023 J. Alloys Compd. 968171912
[37] Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 2772
[38] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8471
[39] Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 451765
[40] Eskin G I, Eskin D G 2014 Ultrasonic treatment of light alloy melts (Boca Raton: CRC Press)
[41] Labusch R 1970 Phys. Status. Solidi. 41659
[42] Wang S, Xu J 2018 Intermetallics. 9559
[43] Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51427
[44] Ma K, Wen H, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62141
[45] Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 91517
[46] Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25806
[47] Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135107212
[48] Li J, Yamanaka K, Zhang Y, Furuhara T, Cao G, Hu J, Chiba A 2024 Mater. Res. Lett. 12399
[49] Wu Z, Gao Y, Bei H 2016 Acta Mater. 120108
Metrics
- Abstract views: 20
- PDF Downloads: 1
- Cited By: 0